Lösung zu Auskühlender Kessel: Unterschied zwischen den Versionen
Inhalt hinzugefügt Inhalt gelöscht
KKeine Bearbeitungszusammenfassung |
Admin (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
#Der Wärmedurchgangskoeffizient entspricht dem Wärmeleitwert pro Fläche. Multipliziert man den gegebenen Wärmedurchgangskoeffizienten mit der Mantelfläche des Kessels, ergibt sich ein Wärmeleitwert von 9 kW/K. Folglich fliesst bei einer Temperaturdifferenz von 45°C ein thermischer Energiestrom der Stärke 407 kW aus dem Kessel. |
#Der Wärmedurchgangskoeffizient entspricht dem Wärmeleitwert pro Fläche. Multipliziert man den gegebenen Wärmedurchgangskoeffizienten mit der Mantelfläche des Kessels, ergibt sich ein Wärmeleitwert von 9 kW/K. Folglich fliesst bei einer Temperaturdifferenz von 45°C ein thermischer Energiestrom der Stärke 407 kW aus dem Kessel. |
||
#Der [[zugeordneter Energiestrom|zugeordnete Energiestrom]] bleibt längs des Transportweges erhalten. Deshalb nimmt die Stärke des Entropiestomes zu. Die Entropie-Produktionsrate ist gleich der Differenz der beiden Entropieströme, die bei verschiedenen Temperaturen den gleichen Energiestrom transportieren <math>\Pi_S = I_{S2} - I_{S1} = I_W \left(\frac {1}{T_2} - \frac {1}{T_1}\right) = \frac {I_W \Delta T}{T_1 |
#Der [[zugeordneter Energiestrom|zugeordnete Energiestrom]] bleibt längs des Transportweges erhalten. Deshalb nimmt die Stärke des Entropiestomes zu. Die Entropie-Produktionsrate ist gleich der Differenz der beiden Entropieströme, die bei verschiedenen Temperaturen den gleichen Energiestrom transportieren <math>\Pi_S = I_{S2} - I_{S1} = I_W \left(\frac {1}{T_2} - \frac {1}{T_1}\right) = \frac {I_W \Delta T}{T_1 T_2}</math> = 174 W/K. |
||
#Die Zeitkonstante ist gleich <math>\tau = RC = \frac {mc}{G_W}</math> = 1.86 10<sup>5</sup> s. Löst man die Funktion für den Entladevorgang des RC-Gliedes <math>\Delta T = \Delta T_a e^{-t/\tau}</math> nach der gesuchten Zeit auf, erhält man <math>t = \tau \ln \frac {\Delta T}{\Delta T_a}</math> = 1.51 10<sup>5</sup> s. |
#Die Zeitkonstante ist gleich <math>\tau = RC = \frac {mc}{G_W}</math> = 1.86 10<sup>5</sup> s. Löst man die Funktion für den Entladevorgang des RC-Gliedes <math>\Delta T = \Delta T_a e^{-t/\tau}</math> nach der gesuchten Zeit auf, erhält man <math>t = \tau \ln \frac {\Delta T}{\Delta T_a}</math> = 1.51 10<sup>5</sup> s. |
||
#Der Nettostrahlung beträgt <math>I_W = \sigma A \left(T^4 - T_U^4\right)</math> = 71.1 kW. Befände sich der Kessel in einem evakuierten Raum, würde er die Wärme mindestens sechs Mal langsamer abgeben. |
#Der Nettostrahlung beträgt <math>I_W = \sigma A \left(T^4 - T_U^4\right)</math> = 71.1 kW. Befände sich der Kessel in einem evakuierten Raum, würde er die Wärme mindestens sechs Mal langsamer abgeben. |
Version vom 20. Juni 2007, 13:04 Uhr
- Der Wärmedurchgangskoeffizient entspricht dem Wärmeleitwert pro Fläche. Multipliziert man den gegebenen Wärmedurchgangskoeffizienten mit der Mantelfläche des Kessels, ergibt sich ein Wärmeleitwert von 9 kW/K. Folglich fliesst bei einer Temperaturdifferenz von 45°C ein thermischer Energiestrom der Stärke 407 kW aus dem Kessel.
- Der zugeordnete Energiestrom bleibt längs des Transportweges erhalten. Deshalb nimmt die Stärke des Entropiestomes zu. Die Entropie-Produktionsrate ist gleich der Differenz der beiden Entropieströme, die bei verschiedenen Temperaturen den gleichen Energiestrom transportieren [math]\Pi_S = I_{S2} - I_{S1} = I_W \left(\frac {1}{T_2} - \frac {1}{T_1}\right) = \frac {I_W \Delta T}{T_1 T_2}[/math] = 174 W/K.
- Die Zeitkonstante ist gleich [math]\tau = RC = \frac {mc}{G_W}[/math] = 1.86 105 s. Löst man die Funktion für den Entladevorgang des RC-Gliedes [math]\Delta T = \Delta T_a e^{-t/\tau}[/math] nach der gesuchten Zeit auf, erhält man [math]t = \tau \ln \frac {\Delta T}{\Delta T_a}[/math] = 1.51 105 s.
- Der Nettostrahlung beträgt [math]I_W = \sigma A \left(T^4 - T_U^4\right)[/math] = 71.1 kW. Befände sich der Kessel in einem evakuierten Raum, würde er die Wärme mindestens sechs Mal langsamer abgeben.