Lösung zu Schwungradspeicher: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
#Die Winkelgeschwindigkeit beträgt: ω = 2 * π * 25'000 U/min / (60 s / min) = 2 * π * 425 1/s = Der [[Drehimpuls]] ist gleich Energie durch halbe Endwinkelgeschwindigkeit, also L = W / (ω/2) = 6 kWH / () = 16.5 kNms. Dank der hohen Drehzahl benötigt dieses Schwungrad bei etwa gleichem Energie-Speichervermögen viel weniger Drehimpuls als der [[Gyrobus]].
#Die Winkelgeschwindigkeit beträgt: ω = 2 * π * 25'000 U/min / (60 s / min) = 2 * π * 417 1/s = 2620 rad/s. Der [[Drehimpuls]] ist gleich Energie durch halbe Endwinkelgeschwindigkeit, also L = W / (ω / 2) = 6 kWh / (2620 rad/s / 2) = 16.5 kNms. Dank der hohen Drehzahl benötigt dieses Schwungrad bei etwa gleichem Energie-Speichervermögen viel weniger Drehimpuls als der [[Gyrobus]].
#Das Massenträgheitsmoment, die Drehimpulskapazität (Grundfläche im [[Flüssigkeitsbild]]), ist gleich Drehimpuls durch Winkelgeschwindigkeit, also gleich 6.3 kgm<sup>2</sup>.
#Das Massenträgheitsmoment, die Drehimpulskapazität (Grundfläche im [[Flüssigkeitsbild]]), ist gleich Drehimpuls durch Winkelgeschwindigkeit, also J = L / &omega; = 16.5 kNms / 2620 rad/s = 6.30 kgm<sup>2</sup>.
#Die Beschleunigung des Autos ist auf 6 m/s<sup>2</sup> beschränkt. Für die Maximalgeschwindigkeit gilt <math>v = \sqrt{ar}</math>. Die zulässige Geschwindigkeit wächst mit der Wurzel aus dem Kurvenradius: 12.2 m/s (44 km/h) bei 25 m Kurvenradius, 24.5 m/s (88 km/h) bei 100 m und 34.6 (125 km/h) bei 200 m.
#Oft ist die Haftreibungskraft F<sub>H</sub> = &mu;<sub>H</sub> * m * g zwischen Fahrzeug und Strasse der Hauptbeitrag zur resultierenden Kraft F<sub>Res</sub> = m * a auf dieses. Deshalb darf auf horizontaler Strasse die Beschleunigung nicht grösser als 60% von g sein: m * a = &mu;<sub>H</sub> * m * g &le; &mu;<sub>H,max</sub> * m * g, also a &le; 0.6 * g &asymp; 6 m/s<sup>2</sup>. Für die Maximalgeschwindigkeit auf der Kreisbahn gilt <math>v = \sqrt{ar}</math>. Die zulässige Geschwindigkeit wächst mit der Wurzel aus dem Kurvenradius: 12.2 m/s (44 km/h) bei 25 m Kurvenradius, 24.5 m/s (88 km/h) bei 100 m und 34.6 (125 km/h) bei 200 m.
#Das Auto dreht sich mit einer [[Winkelgeschwindigkeit]] von <math>\omega_S = \frac {v}{r} = \sqrt{\frac{a}{r}}</math>. Das auf das Schwungrad ausgeübte Drehmoment ist gleich <math>M = \omega_S L = \sqrt{\frac{a}{r}}L</math>, was bei einem Kurvenradius von 200 m einen Wert von 2.86 kNm ergibt. Bei einem Radius von 100 m steigt das maximale Drehmoment auf 4 kNm an und bei einem Radius von 25 m beträgt das maximal möglich Drehmoment 8.1 kNm. Da könnte sportliches Einparken zum Problem werden.
#Das Auto dreht sich mit einer [[Winkelgeschwindigkeit]] von <math>\omega_S = \frac {v}{r} = \frac{\sqrt{a r}}{r} = \sqrt{\frac{a}{r}}</math>. Das auf das Schwungrad ausgeübte Drehmoment ist gleich <math>M = \omega_S L = \sqrt{\frac{a}{r}}L</math> (&omega;<sub>S</sub> und L stehen senkrecht aufeinander), was bei einem Kurvenradius von 200 m einen Wert von 2.86 kNm ergibt. Bei einem Radius von 100 m steigt das maximale Drehmoment auf 4.03 kNm an und bei einem Radius von 25 m beträgt das maximal möglich Drehmoment 8.1 kNm. Da könnte sportliches Einparken zum Problem werden.


'''[[Schwungradspeicher|Aufgabe]]'''
'''[[Schwungradspeicher|Aufgabe]]'''

Aktuelle Version vom 23. Juni 2010, 11:32 Uhr

  1. Die Winkelgeschwindigkeit beträgt: ω = 2 * π * 25'000 U/min / (60 s / min) = 2 * π * 417 1/s = 2620 rad/s. Der Drehimpuls ist gleich Energie durch halbe Endwinkelgeschwindigkeit, also L = W / (ω / 2) = 6 kWh / (2620 rad/s / 2) = 16.5 kNms. Dank der hohen Drehzahl benötigt dieses Schwungrad bei etwa gleichem Energie-Speichervermögen viel weniger Drehimpuls als der Gyrobus.
  2. Das Massenträgheitsmoment, die Drehimpulskapazität (Grundfläche im Flüssigkeitsbild), ist gleich Drehimpuls durch Winkelgeschwindigkeit, also J = L / ω = 16.5 kNms / 2620 rad/s = 6.30 kgm2.
  3. Oft ist die Haftreibungskraft FH = μH * m * g zwischen Fahrzeug und Strasse der Hauptbeitrag zur resultierenden Kraft FRes = m * a auf dieses. Deshalb darf auf horizontaler Strasse die Beschleunigung nicht grösser als 60% von g sein: m * a = μH * m * g ≤ μH,max * m * g, also a ≤ 0.6 * g ≈ 6 m/s2. Für die Maximalgeschwindigkeit auf der Kreisbahn gilt [math]v = \sqrt{ar}[/math]. Die zulässige Geschwindigkeit wächst mit der Wurzel aus dem Kurvenradius: 12.2 m/s (44 km/h) bei 25 m Kurvenradius, 24.5 m/s (88 km/h) bei 100 m und 34.6 (125 km/h) bei 200 m.
  4. Das Auto dreht sich mit einer Winkelgeschwindigkeit von [math]\omega_S = \frac {v}{r} = \frac{\sqrt{a r}}{r} = \sqrt{\frac{a}{r}}[/math]. Das auf das Schwungrad ausgeübte Drehmoment ist gleich [math]M = \omega_S L = \sqrt{\frac{a}{r}}L[/math]S und L stehen senkrecht aufeinander), was bei einem Kurvenradius von 200 m einen Wert von 2.86 kNm ergibt. Bei einem Radius von 100 m steigt das maximale Drehmoment auf 4.03 kNm an und bei einem Radius von 25 m beträgt das maximal möglich Drehmoment 8.1 kNm. Da könnte sportliches Einparken zum Problem werden.

Aufgabe