Lösung zu Gezeitenfeld am Äquator: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
(Die Seite wurde neu angelegt: „== Aufgabe 1 == Mit <math>g_M=G\frac{m_M}{r_M}</math> wird <math>g_{Mitte}=G\frac{m_{M}}{s_{EM}}=\frac{G}{s_{EM}}\frac{g_{M}r_{M}}{s_{EM}}=g_{M}\frac{r_{M}}{s_…“)
 
 
(19 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
== Aufgabe 1 ==
== Aufgabe 1 ==
Mit <math>g_M=G\frac{m_M}{r_M}</math> wird
Mit <math>g_M=G\frac{m_M}{r_M^2}</math> wird
<math>g_{Mitte}=G\frac{m_{M}}{s_{EM}}=\frac{G}{s_{EM}}\frac{g_{M}r_{M}}{s_{EM}}=g_{M}\frac{r_{M}}{s_{EM}}=1.464\cdot10^{-2}N/kg</math>
<math>g_{Erdmitte}=G\frac{m_{M}}{s_{EM}^2}=g_{M}\frac{r_{M}^2}{s_{EM}^2}=3.312\cdot10^{-5}N/kg</math>


== Aufgabe 2 ==
== Aufgabe 2 ==
<math>g_{nahe}=g_{M}\frac{r_{M}}{s_{EM}-r_{E}}=1.489\cdot10^{-2}N/kg</math>
<math>g_{nahe}=g_{M}\frac{r_{M}^2}{(s_{EM}-r_{E})^2}=3.342\cdot10^{-5}N/kg</math>



== Aufgabe 3 ==
== Aufgabe 3 ==
<math>g_{fern}=g_{M}\frac{r_{M}}{s_{EM}+r_{E}}=1.440\cdot10^{-2}N/kg</math>
<math>g_{fern}=g_{M}\frac{r_{M}^2}{(s_{EM}+r_{E})^2}=3.282\cdot10^{-5}N/kg</math>

== Aufgabe 4 ==
Mit <math>g_{t}=-g_{Mitte}</math> wird <math>g_{Gezeiten,nahe}=\vec{g}_{Mond}+\vec{g}_{t}=\vec{g}_{Mond}-\vec{g}_{Mitte}</math>

:<math>g_{Gezeiten,nahe}=g_{nahe}-g_{Mitte}=g_M r_M^2\left(\frac{1}{(s_{EM}-r_E)^2}-\frac{1}{s_{EM}^2}\right)=3.02\cdot10^{-7}N/kg</math> weist gegen den Mond

:<math>g_{Gezeiten,fern}=g_{Mitte}-g_{fern}=g_M r_M^2\left(\frac{1}{s_{EM}^2}-\frac{1}{(s_{EM}+r_E)^2}-\right)=2.97\cdot10^{-7}N/kg</math> weist vom Mond weg

== Aufgabe 5 ==
Wir vergleichen das Gezeitenfeld des Mondes auf der mondnahen Seite der Erde aus Aufgabe 4 mit dem Gezeitenfeld der Erde auf der erdnahen Seite des Mondes

:auf der Erde <math>g_{Gezeiten,nahe}=g_{nahe}-g_{Mitte}=g_M r_M^2\left(\frac{1}{(s_{EM}-r_E)^2}-\frac{1}{s_{EM}^2}\right)=3.02\cdot10^{-7}N/kg</math> weist gegen den Mond

:auf dem Mond <math>g_{Gezeiten,nahe}=g_{nahe}-g_{Mitte}=g_E r_E^2\left(\frac{1}{(s_{EM}-r_M)^2}-\frac{1}{s_{EM}^2}\right)=4.92\cdot10^{-5}N/kg</math> weist gegen die Erde

und erkennen, dass das Gezeitenfeld der Erde auf dem Mond stärker ist als das Gezeitenfeld des Mondes auf der Erde.

'''[[Gezeitenfeld am Äquator|Aufgabe]]'''

Aktuelle Version vom 21. Januar 2016, 09:45 Uhr

Aufgabe 1

Mit [math]g_M=G\frac{m_M}{r_M^2}[/math] wird [math]g_{Erdmitte}=G\frac{m_{M}}{s_{EM}^2}=g_{M}\frac{r_{M}^2}{s_{EM}^2}=3.312\cdot10^{-5}N/kg[/math]

Aufgabe 2

[math]g_{nahe}=g_{M}\frac{r_{M}^2}{(s_{EM}-r_{E})^2}=3.342\cdot10^{-5}N/kg[/math]

Aufgabe 3

[math]g_{fern}=g_{M}\frac{r_{M}^2}{(s_{EM}+r_{E})^2}=3.282\cdot10^{-5}N/kg[/math]

Aufgabe 4

Mit [math]g_{t}=-g_{Mitte}[/math] wird [math]g_{Gezeiten,nahe}=\vec{g}_{Mond}+\vec{g}_{t}=\vec{g}_{Mond}-\vec{g}_{Mitte}[/math]

[math]g_{Gezeiten,nahe}=g_{nahe}-g_{Mitte}=g_M r_M^2\left(\frac{1}{(s_{EM}-r_E)^2}-\frac{1}{s_{EM}^2}\right)=3.02\cdot10^{-7}N/kg[/math] weist gegen den Mond
[math]g_{Gezeiten,fern}=g_{Mitte}-g_{fern}=g_M r_M^2\left(\frac{1}{s_{EM}^2}-\frac{1}{(s_{EM}+r_E)^2}-\right)=2.97\cdot10^{-7}N/kg[/math] weist vom Mond weg

Aufgabe 5

Wir vergleichen das Gezeitenfeld des Mondes auf der mondnahen Seite der Erde aus Aufgabe 4 mit dem Gezeitenfeld der Erde auf der erdnahen Seite des Mondes

auf der Erde [math]g_{Gezeiten,nahe}=g_{nahe}-g_{Mitte}=g_M r_M^2\left(\frac{1}{(s_{EM}-r_E)^2}-\frac{1}{s_{EM}^2}\right)=3.02\cdot10^{-7}N/kg[/math] weist gegen den Mond
auf dem Mond [math]g_{Gezeiten,nahe}=g_{nahe}-g_{Mitte}=g_E r_E^2\left(\frac{1}{(s_{EM}-r_M)^2}-\frac{1}{s_{EM}^2}\right)=4.92\cdot10^{-5}N/kg[/math] weist gegen die Erde

und erkennen, dass das Gezeitenfeld der Erde auf dem Mond stärker ist als das Gezeitenfeld des Mondes auf der Erde.

Aufgabe