Lösung zu Gezeitenfeld am Äquator: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
 
Zeile 24: Zeile 24:


und erkennen, dass das Gezeitenfeld der Erde auf dem Mond stärker ist als das Gezeitenfeld des Mondes auf der Erde.
und erkennen, dass das Gezeitenfeld der Erde auf dem Mond stärker ist als das Gezeitenfeld des Mondes auf der Erde.

'''[[Gezeitenfeld am Äquator|Aufgabe]]'''

Aktuelle Version vom 21. Januar 2016, 09:45 Uhr

Aufgabe 1

Mit [math]g_M=G\frac{m_M}{r_M^2}[/math] wird [math]g_{Erdmitte}=G\frac{m_{M}}{s_{EM}^2}=g_{M}\frac{r_{M}^2}{s_{EM}^2}=3.312\cdot10^{-5}N/kg[/math]

Aufgabe 2

[math]g_{nahe}=g_{M}\frac{r_{M}^2}{(s_{EM}-r_{E})^2}=3.342\cdot10^{-5}N/kg[/math]

Aufgabe 3

[math]g_{fern}=g_{M}\frac{r_{M}^2}{(s_{EM}+r_{E})^2}=3.282\cdot10^{-5}N/kg[/math]

Aufgabe 4

Mit [math]g_{t}=-g_{Mitte}[/math] wird [math]g_{Gezeiten,nahe}=\vec{g}_{Mond}+\vec{g}_{t}=\vec{g}_{Mond}-\vec{g}_{Mitte}[/math]

[math]g_{Gezeiten,nahe}=g_{nahe}-g_{Mitte}=g_M r_M^2\left(\frac{1}{(s_{EM}-r_E)^2}-\frac{1}{s_{EM}^2}\right)=3.02\cdot10^{-7}N/kg[/math] weist gegen den Mond
[math]g_{Gezeiten,fern}=g_{Mitte}-g_{fern}=g_M r_M^2\left(\frac{1}{s_{EM}^2}-\frac{1}{(s_{EM}+r_E)^2}-\right)=2.97\cdot10^{-7}N/kg[/math] weist vom Mond weg

Aufgabe 5

Wir vergleichen das Gezeitenfeld des Mondes auf der mondnahen Seite der Erde aus Aufgabe 4 mit dem Gezeitenfeld der Erde auf der erdnahen Seite des Mondes

auf der Erde [math]g_{Gezeiten,nahe}=g_{nahe}-g_{Mitte}=g_M r_M^2\left(\frac{1}{(s_{EM}-r_E)^2}-\frac{1}{s_{EM}^2}\right)=3.02\cdot10^{-7}N/kg[/math] weist gegen den Mond
auf dem Mond [math]g_{Gezeiten,nahe}=g_{nahe}-g_{Mitte}=g_E r_E^2\left(\frac{1}{(s_{EM}-r_M)^2}-\frac{1}{s_{EM}^2}\right)=4.92\cdot10^{-5}N/kg[/math] weist gegen die Erde

und erkennen, dass das Gezeitenfeld der Erde auf dem Mond stärker ist als das Gezeitenfeld des Mondes auf der Erde.

Aufgabe