Lösung zu Teilelastischer Stoss: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
 
Keine Bearbeitungszusammenfassung
 
(6 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
[[Bild:TeilelastischerStoss.jpg|thumb|Flüssigkeitsbild]]
[[Bild:TeilelastischerStoss.jpg|thumb|Flüssigkeitsbild]]
Alle relevanten Informaitonen können direkt dem Flüssigkeitsbild entnommen werden:
Alle relevanten Informaitonen können direkt dem Flüssigkeitsbild entnommen werden. Man berechnet zuerst die Geschwindigkeiten und ihre Differenzen, siehe Flüssigkeitsbild:
*die inelastische Geschwindigkeit beträgt <math>v_{in} = \frac {0.6 kg \cdot 1.6 m/s + 0.4 kg \cdot -0.4 m/s}{0.6 kg + 0.4 kg}</math> = 0.8 m/s
*die inelastische Geschwindigkeit beträgt <math>v_{in} = \frac {0.6 kg \cdot 1.6 m/s + 0.4 kg \cdot -0.4 m/s}{0.6 kg + 0.4 kg}</math> = 0.8 m/s
*die Geschwindigkeitsdifferenz des Fahrzeugs von links beträgt in der 1. Phase 1.6 m/s - 0.8 m/s = 0.8 ms und in der 2. Phase 0.8 m/s - 0.1 m/s = 0.7 m/s
*das Verhältnis zwischen den Geschwindigkeitsänderungen für die beiden Stossphasen ist für beide Wagen gleich <math>\frac {0.8 m/s}{0.7 m/s} = \frac {1.2 m/s}{1.05 m/s}</math>
*ihr Verhältnis also 0.7 m/s / 0.8 m/s = 0.875
*die maximale Fallhöhe beträgt 2 m/s und die Pumphöhe erreicht einen Wert von 1.75 m/s
*die Geschwindigkeitsdifferenz des Fahrzeugs von rechts beträgt in der 1. Phase 0.8 m/s - (-0.4 m/s) = 1.2 ms
*das Verhältnis der Geschwindigkeitsdifferenzen in den Stossphasen ist für beide Wagen gleich. Also berechnet man für den Wagen von rechts die Geschwindigkeitsdifferenz der 2. Phase zu 0.875 * 1.2 m/s = 1.05 m/s
*daraus ergibt sich eine Endgeschwindigkeit des Wagens von rechts von 0.8 m/s + 1.05 m/s = 1.85 m/s
*die maximale Fallhöhe des Impulses (zu Beginn des Stosses) beträgt 1.6 m/s - (-0.4 m/s) = 2.0 m/s und die max. Pumphöhe (am Ende des Stosses) erreicht einen Wert von 1.85 m/s - 0.1 m/s = 1.75 m/s. Die mittlere Fallhöhe beträgt hier die Hälfte, also 1 m/s, analog die mittlere Pumphöhe 0.875 m/s
*beim Fallen (1. Stossphase) fliesst ein Impuls von 0.8 m/s * 0.6 kg = 0.48 Ns, beim Pumpen (2. Stossphase) von 0.7 m/s * 0.6 kg = 0.42 Ns
Damit ist die Aufgabe gelöst:
Damit ist die Aufgabe gelöst:
#Am Schluss gleitet das leichtere Fahrzeug mit einer Geschwindigkeit von 1.85 m/s nach rechts.
#Am Schluss gleitet das leichtere Fahrzeug mit einer Geschwindigkeit von 1.85 m/s nach rechts.
#In der ersten Teilphase setzt der Impuls frei, die gleich geflossener Impuls mal halbe maximale Fallhöhe ist <math>W_{frei} = 0.48 Ns * 1 m/s = 0.48 J</math>. In der zweiten Teilphase nimmt der Impuls einen Teil dieser Energie wieder zurück <math>W_{auf} = 0.42 Ns * 0.875 m/s = 0.368 J</math>.
#In der ersten Teilphase setzt der Impuls die folgende Energiemenge frei <math>W_{frei} = 0.48 Ns * 1 m/s = 0.48 J</math> (geflossener Impuls mal mittlere Fallhöhe). In der zweiten Teilphase nimmt der Impuls einen Teil dieser Energie wieder zurück <math>W_{auf} = 0.42 Ns * 0.875 m/s = 0.368 J</math>.


Das Verhältnis dieser beiden Energien ist gleich dem Quadrat des Verhältnis der zugehörigen Geschwinigkeitsänderungen.
Das Verhältnis der vom Impuls freigesetzten Energie zur vom Impuls wieder aufgenommenen ist gleich dem Quadrat des Verhältnis der zugehörigen Geschwinigkeitsänderungen.


'''[[Teilelastischer Stoss|Aufgabe]]'''
'''[[Teilelastischer Stoss|Aufgabe]]'''

Aktuelle Version vom 21. November 2013, 20:54 Uhr

Flüssigkeitsbild

Alle relevanten Informaitonen können direkt dem Flüssigkeitsbild entnommen werden. Man berechnet zuerst die Geschwindigkeiten und ihre Differenzen, siehe Flüssigkeitsbild:

  • die inelastische Geschwindigkeit beträgt [math]v_{in} = \frac {0.6 kg \cdot 1.6 m/s + 0.4 kg \cdot -0.4 m/s}{0.6 kg + 0.4 kg}[/math] = 0.8 m/s
  • die Geschwindigkeitsdifferenz des Fahrzeugs von links beträgt in der 1. Phase 1.6 m/s - 0.8 m/s = 0.8 ms und in der 2. Phase 0.8 m/s - 0.1 m/s = 0.7 m/s
  • ihr Verhältnis also 0.7 m/s / 0.8 m/s = 0.875
  • die Geschwindigkeitsdifferenz des Fahrzeugs von rechts beträgt in der 1. Phase 0.8 m/s - (-0.4 m/s) = 1.2 ms
  • das Verhältnis der Geschwindigkeitsdifferenzen in den Stossphasen ist für beide Wagen gleich. Also berechnet man für den Wagen von rechts die Geschwindigkeitsdifferenz der 2. Phase zu 0.875 * 1.2 m/s = 1.05 m/s
  • daraus ergibt sich eine Endgeschwindigkeit des Wagens von rechts von 0.8 m/s + 1.05 m/s = 1.85 m/s
  • die maximale Fallhöhe des Impulses (zu Beginn des Stosses) beträgt 1.6 m/s - (-0.4 m/s) = 2.0 m/s und die max. Pumphöhe (am Ende des Stosses) erreicht einen Wert von 1.85 m/s - 0.1 m/s = 1.75 m/s. Die mittlere Fallhöhe beträgt hier die Hälfte, also 1 m/s, analog die mittlere Pumphöhe 0.875 m/s
  • beim Fallen (1. Stossphase) fliesst ein Impuls von 0.8 m/s * 0.6 kg = 0.48 Ns, beim Pumpen (2. Stossphase) von 0.7 m/s * 0.6 kg = 0.42 Ns

Damit ist die Aufgabe gelöst:

  1. Am Schluss gleitet das leichtere Fahrzeug mit einer Geschwindigkeit von 1.85 m/s nach rechts.
  2. In der ersten Teilphase setzt der Impuls die folgende Energiemenge frei [math]W_{frei} = 0.48 Ns * 1 m/s = 0.48 J[/math] (geflossener Impuls mal mittlere Fallhöhe). In der zweiten Teilphase nimmt der Impuls einen Teil dieser Energie wieder zurück [math]W_{auf} = 0.42 Ns * 0.875 m/s = 0.368 J[/math].

Das Verhältnis der vom Impuls freigesetzten Energie zur vom Impuls wieder aufgenommenen ist gleich dem Quadrat des Verhältnis der zugehörigen Geschwinigkeitsänderungen.

Aufgabe