Lösung zu Aviatik 2011/3: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
(Die Seite wurde neu angelegt: „==Aufgabe 1== 1. Das Triebwerk schneidet duch die Bewegung des Flugzeuges einen Zylinder aus der Lauft aus. Der zugehörige Massenstrom ist gleich ::<math>I_m=…“)
 
Zeile 1:
==Aufgabe 1==
1. Das Triebwerk schneidet duch die Bewegung des Flugzeuges einen Zylinder aus der Lauft aus. Der zugehörige Massenstrom ist gleich
::<math>I_m=\varrho I_V = \varrho v A</math>. Daraus folgt für die Eintrittsöffnung
::<math>A=\frac{I_m}{\varrho v}</math> = 9.28 m<sup>2</sup> oder ''d'' = 3.44 m
2. Die Geschwindigkeitszunahme berechnet sich aus dem Impulsaustausch
::<math>F=\Delta v I_m</math> oder <math>\Delta v=\frac{F}{I_m}</math> = 121 m/s. Daraus folgt für die Austrittsgeschwindigkeit <math>v_{aus}=v_{ein}+\Delta v</math> = 371 m/s.
4. :Die Stromstärke der kinetischen Energie ist gleich Dichte der kinetischen Energie mal Stärke des Volumenstromes. Daraus folgt für die Prozessleistung
::<math>P_1=\frac{v_{aus}^2-v_{ein}^2}{2}I_m</math> = 21.7 MW
3. Die Kraft auf das Triebwerk ist gleich der Impulsaustauschraten der beiden Luftströme
::<math>F=\left(0.1\Delta v_1+0.9\Delta v_2\right)I_m</math> daraus folgt
::<math>\Delta v_2=\frac{F-0.1\Delta v_1I_m}{0.9I_m}</math> = 118116 m/s
::''v''<sub>2a</sub> = 368366 m/s
4. Für die Prozessleistung gilt
4. Die Stromstärke der kinetischen Energie ist gleich Dichte der kinetischen Energie mal Stärke des Volumenstromes
::<math>P_1=\frac{v_{1aus}^2-v_{1ein}^2}{2}0.1I_m</math> = 3.06 MW
::<math>P_1=\frac{v_{2aus}^2-v_{2ein}^2}{2}0.9I_m</math> = 1918.7 MW
::<math>P_{total}= P_1+P_2</math> = 2221.18 MW
 
==Aufgabe 2==

Version vom 25. Juni 2012, 08:54 Uhr

Aufgabe 1

1. Das Triebwerk schneidet duch die Bewegung des Flugzeuges einen Zylinder aus der Lauft aus. Der zugehörige Massenstrom ist gleich

[math]I_m=\varrho I_V = \varrho v A[/math]. Daraus folgt für die Eintrittsöffnung
[math]A=\frac{I_m}{\varrho v}[/math] = 9.28 m2 oder d = 3.44 m

2. Die Geschwindigkeitszunahme berechnet sich aus dem Impulsaustausch

[math]F=\Delta v I_m[/math] oder [math]\Delta v=\frac{F}{I_m}[/math] = 121 m/s. Daraus folgt für die Austrittsgeschwindigkeit [math]v_{aus}=v_{ein}+\Delta v[/math] = 371 m/s.
Die Stromstärke der kinetischen Energie ist gleich Dichte der kinetischen Energie mal Stärke des Volumenstromes. Daraus folgt für die Prozessleistung
[math]P_1=\frac{v_{aus}^2-v_{ein}^2}{2}I_m[/math] = 21.7 MW

3. Die Kraft auf das Triebwerk ist gleich der Impulsaustauschraten der beiden Luftströme

[math]F=\left(0.1\Delta v_1+0.9\Delta v_2\right)I_m[/math] daraus folgt
[math]\Delta v_2=\frac{F-0.1\Delta v_1I_m}{0.9I_m}[/math] = 116 m/s
v2a = 366 m/s

4. Für die Prozessleistung gilt

[math]P_1=\frac{v_{1aus}^2-v_{1ein}^2}{2}0.1I_m[/math] = 3.06 MW
[math]P_1=\frac{v_{2aus}^2-v_{2ein}^2}{2}0.9I_m[/math] = 18.7 MW
[math]P_{total}= P_1+P_2[/math] = 21.8 MW

Aufgabe 2