Lösung zu Spannungsteiler: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
(Die Seite wurde neu angelegt: „Das Leistungsverhältnis ist gleich <math>\eta = \frac{P_1}{P_{23}}=\frac{I_1^2R_1}{I_2^2R_2+I_3^2R_3}</math>“)
 
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
Das Leistungsverhältnis ist gleich <math>\eta = \frac{P_1}{P_{23}}=\frac{I_1^2R_1}{I_2^2R_2+I_3^2R_3}</math>
*das Leistungsverhältnis ist gleich <math>\eta = \frac{P_1}{P_{23}}=\frac{I_1^2R_1}{I_2^2R_2+I_3^2R_3}</math>
*bei der [[Parallelschaltung]] sind die Stromstärken im umgekehrten Verhältnis zu den Widerständen <math>\frac{I_1}{I_2}=\frac{R_2}{R_1}</math> oder <math>I_2=I_1\frac{R_1}{R_2}</math>
*[[Knotensatz]]: <math>I_3=I_2+I_1</math> also <math>I_3=I_1\left(1+\frac{R_1}{R_2}\right)</math>
*das Leistungsverhältnis ist demnach gleich <math>\eta=\frac{R_1}{\frac{R_1^2}{R_2}+R_3\left(1+\frac{R_1}{R_2}\right)^2}=\frac{7}{\frac{49}{22}+310\left(1+\frac{7}{22}\right)^2} = 0.0129</math>

'''[[Spannungsteiler|Aufgabe]]'''

Aktuelle Version vom 15. Oktober 2013, 08:24 Uhr

  • das Leistungsverhältnis ist gleich [math]\eta = \frac{P_1}{P_{23}}=\frac{I_1^2R_1}{I_2^2R_2+I_3^2R_3}[/math]
  • bei der Parallelschaltung sind die Stromstärken im umgekehrten Verhältnis zu den Widerständen [math]\frac{I_1}{I_2}=\frac{R_2}{R_1}[/math] oder [math]I_2=I_1\frac{R_1}{R_2}[/math]
  • Knotensatz: [math]I_3=I_2+I_1[/math] also [math]I_3=I_1\left(1+\frac{R_1}{R_2}\right)[/math]
  • das Leistungsverhältnis ist demnach gleich [math]\eta=\frac{R_1}{\frac{R_1^2}{R_2}+R_3\left(1+\frac{R_1}{R_2}\right)^2}=\frac{7}{\frac{49}{22}+310\left(1+\frac{7}{22}\right)^2} = 0.0129[/math]

Aufgabe