Lösung zu Aviatik 2016/1: Unterschied zwischen den Versionen
Inhalt hinzugefügt Inhalt gelöscht
Zeile 9: | Zeile 9: | ||
==Aufgabe 3== |
==Aufgabe 3== |
||
#Die Geschwindigkeit entspricht der Fläche unter der Beschleunigungs-Zeit-Kurve, was hier bis zum Zeitpunkt 50s 32.5 m/s ergibt. |
|||
#Das Geschwindigkeits-Zeit-Diagramm besteht aus einem Parabelstück, einer Geraden und einem zweiten Parabelstück. Die Übergänge müssen glatt sein, weil die Ableitung nach der Zeit (Beschleunigung) stetig ist. Die Fläche unter dieser Kurve entspricht der Strecke (ein paar Stützpunkte berechnen und Fläche bilden). Mathematisch erhält man mittels Integralrechnung den Wert 979 m. |
|||
#Der von den Antriebsräder in den Zug gepumpte Impulsstrom bleibt zum Teil im Zug und bewirkt die Beschleunigung, der Rest (gemäss gegebener Formel 5000 N) geht an die Umgebung weg oder mathematisch ausgedrückt <math>F_H = ma +F_W</math> = 125 kN (120 kN für die Beschleunigung, 5 kN für den Widerstand nach Formel). |
|||
#Die Leistung des Antriebssystems ist gleich Impulsstromstärke mal Pumphöhe, als gleich 2.19 MW. |
|||
==Aufgabe 4== |
==Aufgabe 4== |
Version vom 2. Februar 2017, 09:33 Uhr
Aufgabe 1
Aufgabe 2
- Unmittelbar nach dem Einschalten fliesst ein Strom der Stärke 9.09 mA. Multiplieziert mit dem Widerstand von 2500 Ω ergibt eine Spannung von 22.7 V. Zu Berechnung der Leistung mulipliziert man Strom und Spannung, was 207 mW ergibt.
- Die elektrische Ladung des Kondensators entspricht der durch den Widerstand 3 geflossenen Ladung. Demnach muss man die Fläche unter der zugehörigen Stromstärke-Zeit-Kurve bilden, was 1.11 mC entspricht.
- Zum Zeitpunkt eine Sekunde ist die Kondensatorladung praktisch maximal. Folglich fliesst der Strom nur noch durch die Widerstände 1 und 2. Diese beiden Widerstände bilden dann einen Spannungsteiler, d.h. sie teilen die angelegte Spannung von 50 V im Verhältnis ihrer Grösse. Weil nur noch ein Strom der Stärke 5 mA durch die beiden Widerstände fliesst, ist der Gesamtwidestand 10'000 Ω. Da der erste Widestand 2500 Ω beträgt, muss der zweite einen Wert von 2500 Ω haben. Die zugehörige Leistung ist dann gleich Widerstand mal Stromstärke im Quadrat, also gleich 186 mW.
- Die Kapazität ist gleich Ladung durch Spannung. Die Ladung ist in 2. berechnet worden, die Spannung von 37.5 V ergibt sich aus dem Spannungsteiler. In Simulationsprogramm (Dymola) ist für diese Kapazität 50 μ eingesetzt worden.
Aufgabe 3
- Die Geschwindigkeit entspricht der Fläche unter der Beschleunigungs-Zeit-Kurve, was hier bis zum Zeitpunkt 50s 32.5 m/s ergibt.
- Das Geschwindigkeits-Zeit-Diagramm besteht aus einem Parabelstück, einer Geraden und einem zweiten Parabelstück. Die Übergänge müssen glatt sein, weil die Ableitung nach der Zeit (Beschleunigung) stetig ist. Die Fläche unter dieser Kurve entspricht der Strecke (ein paar Stützpunkte berechnen und Fläche bilden). Mathematisch erhält man mittels Integralrechnung den Wert 979 m.
- Der von den Antriebsräder in den Zug gepumpte Impulsstrom bleibt zum Teil im Zug und bewirkt die Beschleunigung, der Rest (gemäss gegebener Formel 5000 N) geht an die Umgebung weg oder mathematisch ausgedrückt [math]F_H = ma +F_W[/math] = 125 kN (120 kN für die Beschleunigung, 5 kN für den Widerstand nach Formel).
- Die Leistung des Antriebssystems ist gleich Impulsstromstärke mal Pumphöhe, als gleich 2.19 MW.