Lösung zu Teilelastischer Stoss: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
 
Keine Bearbeitungszusammenfassung
Zeile 2: Zeile 2:
Alle relevanten Informaitonen können direkt dem Flüssigkeitsbild entnommen werden:
Alle relevanten Informaitonen können direkt dem Flüssigkeitsbild entnommen werden:
*die inelastische Geschwindigkeit beträgt <math>v_{in} = \frac {0.6 kg \cdot 1.6 m/s + 0.4 kg \cdot -0.4 m/s}{0.6 kg + 0.4 kg}</math> = 0.8 m/s
*die inelastische Geschwindigkeit beträgt <math>v_{in} = \frac {0.6 kg \cdot 1.6 m/s + 0.4 kg \cdot -0.4 m/s}{0.6 kg + 0.4 kg}</math> = 0.8 m/s
*das Verhältnis zwischen den Geschwindigkeitsänderungen für die beiden Stossphasen ist für beide Wagen gleich <math>\frac {0.8 m/s}{0.7 m/s} = \frac {1.2 m/s}{1.05 m/s}</math>
*das Verhältnis der Geschwindigkeitsänderungen in den Stossphasen ist für beide Wagen gleich <math>\frac {0.8 m/s}{0.7 m/s} = \frac {1.2 m/s}{1.05 m/s}</math>
*die maximale Fallhöhe beträgt 2 m/s und die Pumphöhe erreicht einen Wert von 1.75 m/s
*die maximale Fallhöhe beträgt 2 m/s und die Pumphöhe erreicht einen Wert von 1.75 m/s
Damit ist die Aufgabe gelöst:
Damit ist die Aufgabe gelöst:
#Am Schluss gleitet das leichtere Fahrzeug mit einer Geschwindigkeit von 1.85 m/s nach rechts.
#Am Schluss gleitet das leichtere Fahrzeug mit einer Geschwindigkeit von 1.85 m/s nach rechts.
#In der ersten Teilphase setzt der Impuls frei, die gleich geflossener Impuls mal halbe maximale Fallhöhe ist <math>W_{frei} = 0.48 Ns * 1 m/s = 0.48 J</math>. In der zweiten Teilphase nimmt der Impuls einen Teil dieser Energie wieder zurück <math>W_{auf} = 0.42 Ns * 0.875 m/s = 0.368 J</math>.
#In der ersten Teilphase setzt der Impuls die folgende Energiemenge frei <math>W_{frei} = 0.48 Ns * 1 m/s = 0.48 J</math> (geflossener Impuls mal mittlere Fallhöhe). In der zweiten Teilphase nimmt der Impuls einen Teil dieser Energie wieder zurück <math>W_{auf} = 0.42 Ns * 0.875 m/s = 0.368 J</math>.


Das Verhältnis dieser beiden Energien ist gleich dem Quadrat des Verhältnis der zugehörigen Geschwinigkeitsänderungen.
Das Verhältnis der vom Impuls freigesetzten Energie zur vom Impuls wieder aufgenommenen ist gleich dem Quadrat des Verhältnis der zugehörigen Geschwinigkeitsänderungen.


'''[[Teilelastischer Stoss|Aufgabe]]'''
'''[[Teilelastischer Stoss|Aufgabe]]'''

Version vom 15. Januar 2007, 13:08 Uhr

Flüssigkeitsbild

Alle relevanten Informaitonen können direkt dem Flüssigkeitsbild entnommen werden:

  • die inelastische Geschwindigkeit beträgt [math]v_{in} = \frac {0.6 kg \cdot 1.6 m/s + 0.4 kg \cdot -0.4 m/s}{0.6 kg + 0.4 kg}[/math] = 0.8 m/s
  • das Verhältnis der Geschwindigkeitsänderungen in den Stossphasen ist für beide Wagen gleich [math]\frac {0.8 m/s}{0.7 m/s} = \frac {1.2 m/s}{1.05 m/s}[/math]
  • die maximale Fallhöhe beträgt 2 m/s und die Pumphöhe erreicht einen Wert von 1.75 m/s

Damit ist die Aufgabe gelöst:

  1. Am Schluss gleitet das leichtere Fahrzeug mit einer Geschwindigkeit von 1.85 m/s nach rechts.
  2. In der ersten Teilphase setzt der Impuls die folgende Energiemenge frei [math]W_{frei} = 0.48 Ns * 1 m/s = 0.48 J[/math] (geflossener Impuls mal mittlere Fallhöhe). In der zweiten Teilphase nimmt der Impuls einen Teil dieser Energie wieder zurück [math]W_{auf} = 0.42 Ns * 0.875 m/s = 0.368 J[/math].

Das Verhältnis der vom Impuls freigesetzten Energie zur vom Impuls wieder aufgenommenen ist gleich dem Quadrat des Verhältnis der zugehörigen Geschwinigkeitsänderungen.

Aufgabe