Lösung zu Hubschrauber auf Waage: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
(Skizze und Detaillierung)
Keine Bearbeitungszusammenfassung
Zeile 7: Zeile 7:
:<math>F_N - m_{total} \cdot g = \dot p_{z total} = \dot p_{z H} = m_H \cdot v_z, \quad m_{total} = m_K + m_H </math>
:<math>F_N - m_{total} \cdot g = \dot p_{z total} = \dot p_{z H} = m_H \cdot v_z, \quad m_{total} = m_K + m_H </math>


''F<sub>N</sub>'' ist die Stärke des durch die Waage fliessenden Impulsstromes (bezogen auf das System Glaskasten), also die durch die Waage auf den Kasten ausgeübte Kraft. Weil die Waage mit leerem Glaskasten auf Null eingestellt worden ist, gilt für F_N
''F<sub>N</sub>'' ist die Stärke des durch die Waage fliessenden Impulsstromes (bezogen auf das System Glaskasten), also die durch die Waage auf den Kasten ausgeübte Kraft. Für F<sub>N</sub> gilt


:<math>F_N = Anzeige \cdot g + m_K \cdot g</math>
:<math>F_N = Anzeige \cdot g</math>

Die Anzeige zeigt also die "scheinbare" Masse des Hubschraubers an.


Wir setzen dies in die obige Impulsbilanz ein und erhalten:
Wir setzen dies in die obige Impulsbilanz ein und erhalten:


:<math> Anzeige \cdot g + m_K \cdot g - (m_K + m_H) \cdot g = m_H \cdot \dot v_z</math>
:<math> Anzeige \cdot g - m_{total} \cdot g = m_H \cdot \dot v_z</math>


:<math> Anzeige = m_H \ (1 + \frac {\dot v_z} {g})</math>
:<math> Anzeige = m_{total} + m_H \frac {\dot v_z} {g})</math>


Die Anzeige hängt also von der zu g relativen Geschwindigkeitsänderung des Hubschraubers ab.
Die Anzeige hängt also von der zu g relativen Geschwindigkeitsänderung des Hubschraubers ab.


[[Bild:Hubschrauber_v_t.png|thumb|Geschwindigkeits-Zeit-Diagramm des Hubschraubers]]
[[Bild:Hubschrauber_v_t.png|thumb|Geschwindigkeits-Zeit-Diagramm des Hubschraubers]]
#Nach dem Start und und kurz vor der Landung zeigt die Waage mehr als 500 g an (Impulsinhalt des Hubschraubers wird grösser). Kurz vor dem Erreichen des höchsten Punktes und in der ersten Phase des Absinkens zeigt die Waage weniger als 500 g an (Hubschrauber gibt Impuls ab).
#Nach dem Start und und kurz vor der Landung zeigt die Waage mehr als 2500 g an (Impulsinhalt des Hubschraubers wird grösser). Kurz vor dem Erreichen des höchsten Punktes und in der ersten Phase des Absinkens zeigt die Waage weniger als 2500 g an (Hubschrauber gibt Impuls ab).
#Dem Geschwindigkeits-Zeit-Diagramm des Hubschraubers ist zu entnehmen, wann der Impulsinhalt wie zu- oder abnimmt (das ''v-t-''Diagramm ist das Höhen-Zeit-Diagramm im [[Flüssigkeitsbild]]). In den ersten 0.2 s und den letzten 0.2 s beträgt die Beschleunigung 1 m/s<sup>2</sup> (0.1 ''g''). Folglich zeigt die Waage dann 550 g an. Zwischen den Zeitpunkten 0.8 s und 1.2 s beträgt die Beschleunigung -1 m/s<sup>2</sup> (-0.1 ''g'') und die Waage zeigt 450 g an.
#Dem Geschwindigkeits-Zeit-Diagramm des Hubschraubers ist zu entnehmen, wann der Impulsinhalt wie zu- oder abnimmt (das ''v-t-''Diagramm ist das Höhen-Zeit-Diagramm im [[Flüssigkeitsbild]]). In den ersten 0.2 s und den letzten 0.2 s beträgt die Beschleunigung 1 m/s<sup>2</sup> (0.1 ''g''). Folglich zeigt die Waage dann 2550 g an. Zwischen den Zeitpunkten 0.8 s und 1.2 s beträgt die Beschleunigung -1 m/s<sup>2</sup> (-0.1 ''g'') und die Waage zeigt 2450 g an.


'''[[Hubschrauber auf Waage|Aufgabe]]'''
'''[[Hubschrauber auf Waage|Aufgabe]]'''

Version vom 5. März 2008, 14:33 Uhr

Hubschrauber auf Waage


Der Glaskasten bildet ein geschlossenes System und die Summe über alle leitungsartigen Impulsströme (Oberflächenkräfte) plus die Stärke der Impulsquelle (Gewichtskraft) ist gleich der Änderungsrate des Impulsinhaltes. Vernachlässigt man die Impuls-Speicherfähigkeit der bewegten Luft, kann nur der Hubschrauber seinen Impulsinhalt ändern. Bezogen auf das System Glaskasten lautet die Bilanzgleichung für die Vertikalkomponente des Impulses (z-Achse gegen oben, Gravitationkraft als Impulsabfluss oder Impulssenke)

[math]F_N - m_{total} \cdot g = \dot p_{z total} = \dot p_{z H} = m_H \cdot v_z, \quad m_{total} = m_K + m_H [/math]

FN ist die Stärke des durch die Waage fliessenden Impulsstromes (bezogen auf das System Glaskasten), also die durch die Waage auf den Kasten ausgeübte Kraft. Für FN gilt

[math]F_N = Anzeige \cdot g[/math]

Wir setzen dies in die obige Impulsbilanz ein und erhalten:

[math] Anzeige \cdot g - m_{total} \cdot g = m_H \cdot \dot v_z[/math]
[math] Anzeige = m_{total} + m_H \frac {\dot v_z} {g})[/math]

Die Anzeige hängt also von der zu g relativen Geschwindigkeitsänderung des Hubschraubers ab.

Geschwindigkeits-Zeit-Diagramm des Hubschraubers
  1. Nach dem Start und und kurz vor der Landung zeigt die Waage mehr als 2500 g an (Impulsinhalt des Hubschraubers wird grösser). Kurz vor dem Erreichen des höchsten Punktes und in der ersten Phase des Absinkens zeigt die Waage weniger als 2500 g an (Hubschrauber gibt Impuls ab).
  2. Dem Geschwindigkeits-Zeit-Diagramm des Hubschraubers ist zu entnehmen, wann der Impulsinhalt wie zu- oder abnimmt (das v-t-Diagramm ist das Höhen-Zeit-Diagramm im Flüssigkeitsbild). In den ersten 0.2 s und den letzten 0.2 s beträgt die Beschleunigung 1 m/s2 (0.1 g). Folglich zeigt die Waage dann 2550 g an. Zwischen den Zeitpunkten 0.8 s und 1.2 s beträgt die Beschleunigung -1 m/s2 (-0.1 g) und die Waage zeigt 2450 g an.

Aufgabe