Lösung zu Aviatik 2013/1: Unterschied zwischen den Versionen
Inhalt hinzugefügt Inhalt gelöscht
Admin (Diskussion | Beiträge) |
Admin (Diskussion | Beiträge) |
||
Zeile 14: | Zeile 14: | ||
#Für die Normalbeschleunigung gilt <math>a=\frac{v^2}{r_1}</math> als ist <math>r_1=\frac{v^2}{a}</math> = 36 m. |
#Für die Normalbeschleunigung gilt <math>a=\frac{v^2}{r_1}</math> als ist <math>r_1=\frac{v^2}{a}</math> = 36 m. |
||
# Auf den Wagen wirken die Gewichtskraft (nach unten) und die [[Normalkraft]] (nach oben, unbedingt [[Schnittbild]] zeichnen). Die Summe dieser beiden Kräfte ist gleich Masse mal Beschleunigung. Folglich gilt <math>F_N=mg+F_G=m(a+g)</math> = 13.9 kN. |
# Auf den Wagen wirken die Gewichtskraft (nach unten) und die [[Normalkraft]] (nach oben, unbedingt [[Schnittbild]] zeichnen). Die Summe dieser beiden Kräfte ist gleich Masse mal Beschleunigung. Folglich gilt <math>F_N=mg+F_G=m(a+g)</math> = 13.9 kN. |
||
#Die Geschwindigkeit am höchsten Punkt ermitteln wir durch einen [[ |
#Die Geschwindigkeit am höchsten Punkt ermitteln wir durch einen [[Energiebilanz|Energievergleich]] <math>\frac{m}{2}v_1^2=mgh+\frac{m}{2}v_2^2</math>. Daraus folgt <math>v_2=\sqrt{v_1^2-2gh}</math> = 20.2 m/s. |
||
#Auf den Wagen wirken die Gewichtskraft (nach unten) und die Normalkraft (auch nach unten, unbedingt [[Schnittbild]] zeichnen). In einem beliebigen [[Bezugssystem]] ist das, was man als Gewichtskraft spürt gleich der Summe über alle Oberflächenkräfte. Weil hier die Normlakraft die einzige Oberflächenkraft ist, muss sie halb so gross wie die Gewichtskraft sein. Damit ist die resultierende Kraft anderthalb mal so stark wie die Gewichtskraft und das Grundgesetz der Mechanik lautet <math>\frac{3}{2}mg=m\frac{v_2^2}{r_2}</math> oder <math>r_2=\frac{2v_2^2}{3g}</math> = 27.8 m. |
#Auf den Wagen wirken die Gewichtskraft (nach unten) und die Normalkraft (auch nach unten, unbedingt [[Schnittbild]] zeichnen). In einem beliebigen [[Bezugssystem]] ist das, was man als Gewichtskraft spürt gleich der Summe über alle Oberflächenkräfte. Weil hier die Normlakraft die einzige Oberflächenkraft ist, muss sie halb so gross wie die Gewichtskraft sein. Damit ist die resultierende Kraft anderthalb mal so stark wie die Gewichtskraft und das Grundgesetz der Mechanik lautet <math>\frac{3}{2}mg=m\frac{v_2^2}{r_2}</math> oder <math>r_2=\frac{2v_2^2}{3g}</math> = 27.8 m. |
||
Version vom 26. Januar 2014, 07:35 Uhr
Lösung 1
- Das erste Gefäss enthält anfänglich 0.6 m3 Wasser. Dieses verteilt sich auf insgesamt einen Quadratmeter Grundfläche. Somit steht das Wasser am Schluss in beiden Gefässen 0.6 m hoch. Insgesamt fliessen in 600 s 0.42 m3 (1.4 m * 0.3 m2) Wasser von einem Gefäss ins andere. Das ergibt einen mittleren Volumenstrom der Stärke 0.7 l/s. Weil die Volumenstromstärke linear mit der Zeit abnimmt, muss der Anfangsstrom doppelt so stark sein, also 1.4 l/s.
- Das geflossene Volumen entspricht der Fläche unter dem Volumenstromstärke-Zeit-Diagramm. Diese Fläche ist hier ein Dreieck. Demnach fliessen in den letzten 400 s 4/9 der Menge weg und somit in den ersten 200 s 5/9 der Menge, was 0.233 m3 entspricht. Dies ergibt eine Füllhöhe von 1.22 m.
- Die 0.42 m3 oder 420 kg Wasser fallen im Durchschnitt ein Meter tief. Also gilt [math]W_{diss}=\Delta m g\Delta h= 4.12 kJ[/math]
- Für turbulente Strömungen gilt [math]\Delta p=k_VI_V^2[/math]. Weil sich die Druckdifferenz mit der Verdoppelung des Durchmessers nicht ändert, gilt [math]\frac{I_{V2}}{I_{V1}}=2^{5/2}[/math]. Damit das gleiche Volumen fliesst, muss das Produkt aus Volumenstromstärke und Zeit konstant bleiben, womit die Prozesszeit umgekehrt proportional zu Anfangsvolumenstromstärke ist [math]\Delta t_2=2^{-5/2}\Delta t_1[/math] = 106 s.
Lösung 2
- Die beiden parallel geschalteten Widerstände können durch einen einzigen Widerstand ersetzt werden [math]R_{23}=\frac{R_2R_3}{R_2+R_3}[/math] = 1200 Ω Erster Widerstand und Ersatzwiderstand teilen die Spannung im Verhältnis ihrer Stärke, als im Verhältnis 2000/1200 = 5/3. Somit liegt über dem Ersatzwiderstand und auch über dem 3. Widerstand eine Spannung von 7.5 V.
- [math]P_1=U_1I_1=\frac{U_1^2}{R_1}[/math] = 28.1 mW
- Die geflossene Ladung entspricht der Fläche unter der Stromstärke-Spannungs-Kurve. Nähert man die effektive Fläche mit einem flächengleichen Dreieck, ist der Wert einfach zu ermitteln: 2.10-5 C
- [math]C=\frac{Q}{U}[/math] = 2 μF.
Lösung 3
- Für die Normalbeschleunigung gilt [math]a=\frac{v^2}{r_1}[/math] als ist [math]r_1=\frac{v^2}{a}[/math] = 36 m.
- Auf den Wagen wirken die Gewichtskraft (nach unten) und die Normalkraft (nach oben, unbedingt Schnittbild zeichnen). Die Summe dieser beiden Kräfte ist gleich Masse mal Beschleunigung. Folglich gilt [math]F_N=mg+F_G=m(a+g)[/math] = 13.9 kN.
- Die Geschwindigkeit am höchsten Punkt ermitteln wir durch einen Energievergleich [math]\frac{m}{2}v_1^2=mgh+\frac{m}{2}v_2^2[/math]. Daraus folgt [math]v_2=\sqrt{v_1^2-2gh}[/math] = 20.2 m/s.
- Auf den Wagen wirken die Gewichtskraft (nach unten) und die Normalkraft (auch nach unten, unbedingt Schnittbild zeichnen). In einem beliebigen Bezugssystem ist das, was man als Gewichtskraft spürt gleich der Summe über alle Oberflächenkräfte. Weil hier die Normlakraft die einzige Oberflächenkraft ist, muss sie halb so gross wie die Gewichtskraft sein. Damit ist die resultierende Kraft anderthalb mal so stark wie die Gewichtskraft und das Grundgesetz der Mechanik lautet [math]\frac{3}{2}mg=m\frac{v_2^2}{r_2}[/math] oder [math]r_2=\frac{2v_2^2}{3g}[/math] = 27.8 m.