Lösung zu Gezeitenfeld am Äquator: Unterschied zwischen den Versionen
Admin (Diskussion | Beiträge) |
Admin (Diskussion | Beiträge) |
||
Zeile 19: | Zeile 19: | ||
Wir vergleichen das Gezeitenfeld des Mondes auf der mondnahen Seite der Erde aus Aufgabe 4 mit dem Gezeitenfeld der Erde auf der erdnahen Seite des Mondes |
Wir vergleichen das Gezeitenfeld des Mondes auf der mondnahen Seite der Erde aus Aufgabe 4 mit dem Gezeitenfeld der Erde auf der erdnahen Seite des Mondes |
||
:auf der Erde <math>g_{z,nahe}=g_{nahe}-g_{Mitte}=g_M r_M^2\left(\frac{1}{( |
:auf der Erde <math>g_{z,nahe}=g_{nahe}-g_{Mitte}=g_M r_M^2\left(\frac{1}{(s_{EM}-r_E)^2}-\frac{1}{s_{EM}^2}\right)=2.77\cdot10^{-6}N/kg</math> weist gegen den Mond |
||
:auf dem Mond <math>g_{z,nahe}=g_{nahe}-g_{Mitte}=g_E r_E^2\left(\frac{1}{( |
:auf dem Mond <math>g_{z,nahe}=g_{nahe}-g_{Mitte}=g_E r_E^2\left(\frac{1}{(s_{EM}-r_M)^2}-\frac{1}{s_{EM}^2}\right)=4.92\cdot10^{-5}N/kg</math> weist gegen die Erde |
||
und erkennen, dass das Gezeitenfeld der Erde auf dem Mond stärker ist als das Gezeitenfeld des Mondes auf der Erde. Das Gezeitenfeld geht näherungsweise mit dem reziproken Abstand (vom erzeugenden Himmelskörper) hoch drei. |
und erkennen, dass das Gezeitenfeld der Erde auf dem Mond stärker ist als das Gezeitenfeld des Mondes auf der Erde. Das Gezeitenfeld geht näherungsweise mit dem reziproken Abstand (vom erzeugenden Himmelskörper) hoch drei. |
Version vom 21. Januar 2016, 09:04 Uhr
Aufgabe 1
Mit [math]g_M=G\frac{m_M}{r_M^2}[/math] wird [math]g_{Erdmitte}=G\frac{m_{M}}{s_{EM}^2}=g_{M}\frac{r_{M}^2}{s_{EM}^2}=1.323\cdot10^{-4}N/kg[/math]
Aufgabe 2
[math]g_{nahe}=g_{M}\frac{r_{M}^2}{(s_{EM}-r_{E})^2}=1.368\cdot10^{-4}N/kg[/math]
Aufgabe 3
[math]g_{fern}=g_{M}\frac{r_{M}^2}{(s_{EM}+r_{E})^2}=1.280\cdot10^{-4}N/kg[/math]
Aufgabe 4
Mit [math]g_{t}=-g_{Mitte}[/math] wird [math]g_{z,nahe}=\vec{g}_{Mond}+\vec{g}_{t}=\vec{g}_{Mond}-\vec{g}_{Mitte}[/math]
- [math]g_{z,nahe}=g_{nahe}-g_{Mitte}=g_M r_M^2\left(\frac{1}{(s_{EM}-r_E)^2}-\frac{1}{s_{EM}^2}\right)=2.77\cdot10^{-6}N/kg[/math] weist gegen den Mond
- [math]g_{z,fern}=g_{Mitte}-g_{fern}=g_M r_M^2\left(\frac{1}{s_{EM}^2}-\frac{1}{(s_{EM}+r_E)^2}-\right)=2.634\cdot10^{-6}N/kg[/math] weist vom Mond weg
Aufgabe 5
Wir vergleichen das Gezeitenfeld des Mondes auf der mondnahen Seite der Erde aus Aufgabe 4 mit dem Gezeitenfeld der Erde auf der erdnahen Seite des Mondes
- auf der Erde [math]g_{z,nahe}=g_{nahe}-g_{Mitte}=g_M r_M^2\left(\frac{1}{(s_{EM}-r_E)^2}-\frac{1}{s_{EM}^2}\right)=2.77\cdot10^{-6}N/kg[/math] weist gegen den Mond
- auf dem Mond [math]g_{z,nahe}=g_{nahe}-g_{Mitte}=g_E r_E^2\left(\frac{1}{(s_{EM}-r_M)^2}-\frac{1}{s_{EM}^2}\right)=4.92\cdot10^{-5}N/kg[/math] weist gegen die Erde
und erkennen, dass das Gezeitenfeld der Erde auf dem Mond stärker ist als das Gezeitenfeld des Mondes auf der Erde. Das Gezeitenfeld geht näherungsweise mit dem reziproken Abstand (vom erzeugenden Himmelskörper) hoch drei.