Biegung: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
Biegung tritt auf, wenn ein Körper von einem seitwärts fliessenden Drehimpulsstrom durchströmt wird. Die Stärke dieses Drehimpulsstromes bezüglich einer ausgewählten Querschnittfläche nennt man Biegemoment. In der Regel untersucht man die Biegung prismatischer Körper (Balken, offene und geschlossene Profile wie Vierkantrohr oder U-, T- oder H-Balken). Hier wird angenommen, dass die ''x''-Achse in Richtung des Balkens zeigt, dass ''y''-Drehimpuls durch den Balken transportiert wird.
Biegung tritt auf, wenn ein Körper von seitwärts fliessenden Drehimpuls durchströmt wird. Die Stärke dieses Drehimpulsstromes bezüglich einer ausgewählten Querschnittfläche nennt man Biegemoment. In der Regel untersucht man die Biegung prismatischer Körper (Balken, Vierkantrohr, U-, T- oder H-Balken). Hier wird angenommen, dass die ''x''-Achse in Richtung des Balkens zeigt und dass ''y''-Drehimpuls durch den Balken transportiert wird.


==Drehimpulstransport==
==Drehimpulstransport==
Ein [[Drehimpulsstrom]] lässt sich nur anhand der begleitenden Impulsströme nachweisen. Damit ein Drehimpuls seitwärts zu seiner Bezugsrichtung fliessen kann, muss der Transport seitwärts durch entsprechende Impulsströme berandet werden. Fliesst ''y''-Drehimpuls in die positive ''x''-Richtung, wird der Drehimpulsstrom beidseits von einem ''x''-Impulsstrom berandet. Auf der positiven Seite fliesst der ''x''-Impulsstrom gegen die ''x''-Achse (Zug) und auf der andern Seite mit der ''x''-Achse.
Ein [[Drehimpulsstrom]] lässt sich nur anhand der begleitenden Impulsströme nachweisen. Damit ein Drehimpuls seitwärts zu seiner Bezugsrichtung fliessen kann, muss der Transport beidseits durch Impulsströme berandet werden. Fliesst ''y''-Drehimpuls in die positive ''x''-Richtung, fliesst auf der Seite der positiven ''z''-Achse der ''x''-Impulsstrom gegen die ''x''-Achse (Zug) und auf der andern Seite mit der ''x''-Achse (Druck). Zwischen der Drehimpulsstromdichte ''j<sub>Lyx</sub>'' un der Impulsstromdichte ''j<sub>pxx</sub>'' besteht eine spezielle Gradientenbeziehung

<math>j_{Lyx,z} = -j_{pxx}</math>

Die Symbolik ''<sub>,z</sub> steht für die partielle Ableitung nach der ''z''-Koordinate.


==Drehimpulseinleitung==
==Drehimpulseinleitung==

Version vom 9. Januar 2007, 21:06 Uhr

Biegung tritt auf, wenn ein Körper von seitwärts fliessenden Drehimpuls durchströmt wird. Die Stärke dieses Drehimpulsstromes bezüglich einer ausgewählten Querschnittfläche nennt man Biegemoment. In der Regel untersucht man die Biegung prismatischer Körper (Balken, Vierkantrohr, U-, T- oder H-Balken). Hier wird angenommen, dass die x-Achse in Richtung des Balkens zeigt und dass y-Drehimpuls durch den Balken transportiert wird.

Drehimpulstransport

Ein Drehimpulsstrom lässt sich nur anhand der begleitenden Impulsströme nachweisen. Damit ein Drehimpuls seitwärts zu seiner Bezugsrichtung fliessen kann, muss der Transport beidseits durch Impulsströme berandet werden. Fliesst y-Drehimpuls in die positive x-Richtung, fliesst auf der Seite der positiven z-Achse der x-Impulsstrom gegen die x-Achse (Zug) und auf der andern Seite mit der x-Achse (Druck). Zwischen der Drehimpulsstromdichte jLyx un der Impulsstromdichte jpxx besteht eine spezielle Gradientenbeziehung

[math]j_{Lyx,z} = -j_{pxx}[/math]

Die Symbolik ,z steht für die partielle Ableitung nach der z-Koordinate.

Drehimpulseinleitung

Verhalten des Bauteils

Biegelinie