Lösung zu Fall gegen Neutronenstern: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
#Auf 20 m Höhe nimmt das Gravitationsfeld an der Erdoberfläche etwa um 62 μN/kg ab. Folglich ist im Fallturm zu Bremen die gravitative Impulsquelle bei der oberen Kugel um 124 μN schwächer als bei der unteren. Im freien Fall muss die halbe Differenz von 62 μN über das Seil ausgeglichen werden.
#Auf einer Höhe von 20 m nimmt das [[Gravitationsfeld]] der Erde etwa um 62 μN/kg ab. Folglich ist im Fallturm zu Bremen die gravitative Impulsquelle bei der oberen Kugel um 124 μN schwächer als bei der unteren. Weil im freien Fall die halbe Differenz ausgeglichen werden muss, fliesst ein Impulsstrom von 62 μN durch das Seil.
#Die Stärke des Gravitationsfeldes nimmt quadratisch mit dem Abstand ab. Nun interessiert aber nur die Differenz der Feldstärke über der Länge 2''s'' <math>\Delta g = G m (\frac {1}{(r - s)^2} - \frac {1}{(r + s)^2} = G m \frac {4rs}{r^4-2r^2s^2+s4} \approx G m \frac {4s}{r^3}</math> = 10'672 N/kg. Folglich ist die Impulsquelle in der unteren Kugel 21'344 N stärker als in der oberen, was einen Ausgleichsstrom von 10.6 kN zur Folge hat.
#Die Stärke des Gravitationsfeldes nimmt quadratisch mit dem Abstand ab. Nun interessiert aber nur die Differenz der Feldstärke über der Länge 2''s'' = 20 m. Diese beträgt <math>\Delta g = G m (\frac {1}{(r - s)^2} - \frac {1}{(r + s)^2} = G m \frac {4rs}{r^4-2r^2s^2+s4} \approx G m \frac {4s}{r^3}</math> = 10'672 N/kg. Folglich ist die Impulsquelle 1000 km vom Zentrum des Neutronensternes entfernt in der unteren Kugel um 21'344 N stärker als in der oberen, was einen Ausgleichsstrom von 10.6 kN zur Folge hat (falls das Seil nicht schon vorher gerissen ist).
#Ein Raumschiff, das auf einen Neutronenstern zustürzt, wird zerrissen, bevor es dessen Oberfläche erreicht. Dieser Effekt ist bei einem schwarzen Loch noch wirkungsvoller.
#Ein Raumschiff, das auf einen Neutronenstern zustürzt, wird in kleine Teile zerrissen, bevor es dessen Oberfläche erreicht hat. Bei einem schwarzen Loch dürfte dieser Effekt noch wirkungsvoller sein. Darum sollte man es sich zweimal überlegen, ob man durch ein Wurmloch einen andern Teil unserer [[Raum-Zeit]] besuchen will.


'''[[Fall gegen Neutronenstern|Aufgabe]]'''
'''[[Fall gegen Neutronenstern|Aufgabe]]'''

Version vom 29. Januar 2007, 14:00 Uhr

  1. Auf einer Höhe von 20 m nimmt das Gravitationsfeld der Erde etwa um 62 μN/kg ab. Folglich ist im Fallturm zu Bremen die gravitative Impulsquelle bei der oberen Kugel um 124 μN schwächer als bei der unteren. Weil im freien Fall die halbe Differenz ausgeglichen werden muss, fliesst ein Impulsstrom von 62 μN durch das Seil.
  2. Die Stärke des Gravitationsfeldes nimmt quadratisch mit dem Abstand ab. Nun interessiert aber nur die Differenz der Feldstärke über der Länge 2s = 20 m. Diese beträgt [math]\Delta g = G m (\frac {1}{(r - s)^2} - \frac {1}{(r + s)^2} = G m \frac {4rs}{r^4-2r^2s^2+s4} \approx G m \frac {4s}{r^3}[/math] = 10'672 N/kg. Folglich ist die Impulsquelle 1000 km vom Zentrum des Neutronensternes entfernt in der unteren Kugel um 21'344 N stärker als in der oberen, was einen Ausgleichsstrom von 10.6 kN zur Folge hat (falls das Seil nicht schon vorher gerissen ist).
  3. Ein Raumschiff, das auf einen Neutronenstern zustürzt, wird in kleine Teile zerrissen, bevor es dessen Oberfläche erreicht hat. Bei einem schwarzen Loch dürfte dieser Effekt noch wirkungsvoller sein. Darum sollte man es sich zweimal überlegen, ob man durch ein Wurmloch einen andern Teil unserer Raum-Zeit besuchen will.

Aufgabe