Druckgesetz der Hydrostatik: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
Der [[Druck]] in einer ruhenden Flüssigkeit oder einem ruhenden Gas nimmt durch die Wirkung des [[Gravitationsfeld]]es mit der Eintauchtiefe zu. Diese Druckzunahme wird durch das '''Druckgesetz der Hydrostatik''' beschrieben.
Der [[Druck]] in einer ruhenden Flüssigkeit nimmt durch die Wirkung des [[Gravitationsfeld]]es mit der Eintauchtiefe zu. Diese Druckzunahme wird durch das '''Druckgesetz der Hydrostatik''' beschrieben.


==homogenes Gravitationsfeld==
==Herleitung==
Das Druckgesetz der Hydrostatik kann mit Hilfe einer [[Energiebilanz]] formuliert werden. Dazu wählt man zwei Punkt in der Flüssigkeit aus und denkt sich eine ganz langsame Strömung von Punkt eins nach Punkt zwei. Diese Strömung soll so klein sein, dass sie praktisch keine Reibung verursacht und fast keine kinetische Energie benötigt. Dann gelten die Voraussetzungen des [[Gesetz von Bernoulli|Gesetzes von Bernoulli]]:
Das Druckgesetz der Hydrostatik kann mit Hilfe einer [[Energiebilanz]] formuliert werden. Dazu wählt man zwei Punkt in der Flüssigkeit aus und denkt sich eine ganz langsame Strömung von Punkt eins nach Punkt zwei. Diese Strömung soll so klein sein, dass sie praktisch keine Reibung verursacht und fast keine kinetische Energie benötigt. Dann gelten die Voraussetzungen des [[Gesetz von Bernoulli|Gesetzes von Bernoulli]]:


Zeile 11: Zeile 11:


Der Druck in einer Flüssigkeit steigt proportional zur Eintauchtiefe, wobei der Proportionalitätsfaktor gleich Dichte mal [[Gravitationsfeld]]stärke ist. Im häufigsten Fall, beim Eintauchen in Wasser, nimmt der Druck pro zehn Meter Wassertiefe um ein paar zu.
Der Druck in einer Flüssigkeit steigt proportional zur Eintauchtiefe, wobei der Proportionalitätsfaktor gleich Dichte mal [[Gravitationsfeld]]stärke ist. Im häufigsten Fall, beim Eintauchen in Wasser, nimmt der Druck pro zehn Meter Wassertiefe um ein paar zu.

==homogenes Gravitationsfeld==


==Zentrifugalfeld==
==Zentrifugalfeld==
Die allgemeine Form des Gesetzes von Bernoulli lautet

:<math>\left(\frac {\rho}{2} v_1^2 + \rho \varphi_G + p_1 \right) I_V{_1} + \left(\frac {\rho}{2} v_2^2 + \rho \varphi_G + p_2 \right) I_V_2 = 0 </math>

Setzt man die Geschwindigkeiten wieder gleich Null und löst die Gleichung nach dem Druck im Punkt zwei auf, gewinnt man die allgemeine Druckformel für Flüssigkeiten in einem [[Gravitationsfeld]]

:<math>p_2 = p_1 + \rho (\varphi_{G1} - \varphi_{G2}) = p_1 + \rho \Delta \varphi_G</math>

Die Druckänderung in einer ruhenden Flüssigkeit ist gleich der Dichte mal die Änderung des Gravitationspotentials. Wendet man diese Formel auf die Flüssigkeit einer Zentrifuge an, erhält man das Druckgesetz für Zentrifugalfelder

:<math>p_2 = p_1 + \rho (\frac {\omega_2^2 r_2^2}{2} - \frac {\omega_1^2 r_1^2}{2})</math>


==homogener Himmelskörper==

==hydrostatisches Paradoxon==


[[Kategorie:Hydro]] [[Kategorie:OffSys]]
[[Kategorie:Hydro]] [[Kategorie:OffSys]]

Version vom 26. Februar 2007, 08:41 Uhr

Der Druck in einer ruhenden Flüssigkeit nimmt durch die Wirkung des Gravitationsfeldes mit der Eintauchtiefe zu. Diese Druckzunahme wird durch das Druckgesetz der Hydrostatik beschrieben.

homogenes Gravitationsfeld

Das Druckgesetz der Hydrostatik kann mit Hilfe einer Energiebilanz formuliert werden. Dazu wählt man zwei Punkt in der Flüssigkeit aus und denkt sich eine ganz langsame Strömung von Punkt eins nach Punkt zwei. Diese Strömung soll so klein sein, dass sie praktisch keine Reibung verursacht und fast keine kinetische Energie benötigt. Dann gelten die Voraussetzungen des Gesetzes von Bernoulli:

[math]\left(\frac {\rho}{2} v_1^2 + \rho g h_1 + p_1 \right) I_V{_1} + \left(\frac {\rho}{2} v_2^2 + \rho g h_2 + p_2 \right) I_V_2 = 0 [/math]

Nun lässt man die Strömungsgeschwindigkeit gegen Null gehen und löst diese Beziehung nach dem Druck in Punkt zwei auf

[math]p_2 = p_1 + \rho g (h_1 - h_2) = p_1 + \rho g \Delta h[/math]

Der Druck in einer Flüssigkeit steigt proportional zur Eintauchtiefe, wobei der Proportionalitätsfaktor gleich Dichte mal Gravitationsfeldstärke ist. Im häufigsten Fall, beim Eintauchen in Wasser, nimmt der Druck pro zehn Meter Wassertiefe um ein paar zu.

Zentrifugalfeld

Die allgemeine Form des Gesetzes von Bernoulli lautet

[math]\left(\frac {\rho}{2} v_1^2 + \rho \varphi_G + p_1 \right) I_V{_1} + \left(\frac {\rho}{2} v_2^2 + \rho \varphi_G + p_2 \right) I_V_2 = 0 [/math]

Setzt man die Geschwindigkeiten wieder gleich Null und löst die Gleichung nach dem Druck im Punkt zwei auf, gewinnt man die allgemeine Druckformel für Flüssigkeiten in einem Gravitationsfeld

[math]p_2 = p_1 + \rho (\varphi_{G1} - \varphi_{G2}) = p_1 + \rho \Delta \varphi_G[/math]

Die Druckänderung in einer ruhenden Flüssigkeit ist gleich der Dichte mal die Änderung des Gravitationspotentials. Wendet man diese Formel auf die Flüssigkeit einer Zentrifuge an, erhält man das Druckgesetz für Zentrifugalfelder

[math]p_2 = p_1 + \rho (\frac {\omega_2^2 r_2^2}{2} - \frac {\omega_1^2 r_1^2}{2})[/math]


homogener Himmelskörper

hydrostatisches Paradoxon