Lösung zu U-Rohr mit Federn: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
==1. Rohrlänge==
#Die Schwingungsdauer T hängt von der Induktivität und der Kapazität des U-Rohrs ab:


Die Schwingungsdauer T hängt von der Induktivität und der Kapazität des U-Rohrs ab:
:<math>T = 2 \pi \sqrt {L \ C} = 2 \pi \sqrt {\frac {l} {2 g}} </math>

:<math>T = 2 \pi \sqrt {L_V \ C_V} = 2 \pi \sqrt {\frac {l} {2 g}} </math>


Wir lösen die Formel für T nach l auf und erhalten:
Wir lösen die Formel für T nach l auf und erhalten:
Zeile 7: Zeile 9:
:<math>l = 2 g \left( \frac {T} {2 \pi}\right)^2 = 0.5 \ m</math>
:<math>l = 2 g \left( \frac {T} {2 \pi}\right)^2 = 0.5 \ m</math>



Änderungsrate der Volumenstromstärke beträgt -0.04 m<sup>3</sup>/s<sup>2</sup>. Die Berechnung der hydraulischen Induktivität findet man unter [[Gerades Rohrstück]]. Aus der Definitionsgleichung für die hydraulische Induktivität <math>L_V = \frac {\Delta p}{\dot I_V} = \frac {\Delta p}{dI_V/dt}</math> folgt eine Druckdifferenz von 27.7 bar.
==2. Induktivität==

Die Induktivität des U-Rohrs beträgt:

:<math>L_V = \frac {\rho l} {A} = 1.13 \cdot 10^8\ kg/m^4 </math>





'''[[U-Rohr mit Federn|Aufgabe]]'''
'''[[U-Rohr mit Federn|Aufgabe]]'''

Version vom 12. Oktober 2007, 07:46 Uhr

1. Rohrlänge

Die Schwingungsdauer T hängt von der Induktivität und der Kapazität des U-Rohrs ab:

[math]T = 2 \pi \sqrt {L_V \ C_V} = 2 \pi \sqrt {\frac {l} {2 g}} [/math]

Wir lösen die Formel für T nach l auf und erhalten:

[math]l = 2 g \left( \frac {T} {2 \pi}\right)^2 = 0.5 \ m[/math]


2. Induktivität

Die Induktivität des U-Rohrs beträgt:

[math]L_V = \frac {\rho l} {A} = 1.13 \cdot 10^8\ kg/m^4 [/math]



Aufgabe