Lösung zu Abfüllwaage: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 24: Zeile 24:


===mit Loch im Becherglas===
===mit Loch im Becherglas===
Die Volumenströme I<sub>V1</sub> und I<sub>V2</sub> sind gleich gross weil der Wasserspiegel im Becherglas auf konstanter Höhe bleibt. Die Geschwindigkeit v<sub>3</sub> im Loch des Becherglases beträgt: <math> v_3 = \sqrt{2gh_3}</math>. Daraus kann man die Stärke des zweiten konvektiven Impulsstromes im Boden des Becherglases berechnen:
Die Volumenströme I<sub>V1</sub> und I<sub>V2</sub> durch die beiden Ausflusslöcher sind gleich gross, weil der Wasserspiegel im Becherglas auf konstanter Höhe bleibt. Die Geschwindigkeit v<sub>3</sub> im Loch des Becherglases beträgt: <math> v_3 = \sqrt{2gh_3}</math>. Daraus kann man die Stärke des zweiten konvektiven Impulsstromes im Boden des Becherglases berechnen:


:<math>I_{p2} = \rho v_3 I_{V2} = \rho \sqrt{2gh_3} I_{V1} = 2 \rho g \sqrt{h_3 h_1} A_1</math> = 2.8 N
:<math>I_{p2} = \rho v_3 I_{V2} = \rho \sqrt{2gh_3} I_{V1} = 2 \rho g \sqrt{h_3 h_1} A_1</math> = 2.8 N

Version vom 12. März 2008, 18:12 Uhr


ohne Loch im Becherglas

Die Impulsbilanz bezüglich des Systems Becherglas lautet (positive Richtung nach unten)

[math]{-}F_N + F_G + I_{p1} = 0[/math]

Die Stärke des konvektiven Impulsstromes Ip1 ist gleich

[math]I_{p1} = \rho v_2 I_{V1} = \rho v_2 v_1 A_1 [/math]

Die Geschwindigkeiten beim Ausfluss v1 und beim Auftreffen auf die Wasseroberfläche v2 ergeben sich aus der Energiebilanz (Torricelli)

[math] v_1 = \sqrt{2gh_1}, \quad v_2 = \sqrt{2gh_2}[/math]

also gilt für den konvektiven Impulsstrom

[math]I_{p1} = 2 g \rho A_1 \sqrt{h_1 h_2}[/math] = 7.29 N

Bei einer Gewichtskraft von total 35.0 N hat die Normalkraft (entspricht der Waagenanzeige) einen momentanen Wert von

[math]F_N = F_G + I_{p1}[/math] = 42.3 N

mit Loch im Becherglas

Die Volumenströme IV1 und IV2 durch die beiden Ausflusslöcher sind gleich gross, weil der Wasserspiegel im Becherglas auf konstanter Höhe bleibt. Die Geschwindigkeit v3 im Loch des Becherglases beträgt: [math] v_3 = \sqrt{2gh_3}[/math]. Daraus kann man die Stärke des zweiten konvektiven Impulsstromes im Boden des Becherglases berechnen:

[math]I_{p2} = \rho v_3 I_{V2} = \rho \sqrt{2gh_3} I_{V1} = 2 \rho g \sqrt{h_3 h_1} A_1[/math] = 2.8 N

Aus der Impulsbilanz [math]{-}F_N + F_G + I_{p1} - I_{p2} = 0[/math] erhält man wieder die Festhaltekraft (oder Normalkraft)

[math]F_N = F_G + I_{p1} - I_{p2}[/math] = 39.5 N

Aufgabe