Rotierendes Bezugssystem
Phänomene
Nimmt man einen Kinderballon mit auf eine abendliche Busfahrt, stellt man bei jeder Kurve fest, dass die müden Köpfe der Passagiere die Tendenz haben, gegen aussen zu kippen, der Ballon sich aber wie ein Motorradfahrer in die Kurve legt. Selber kann man spüren, wie man wie von Geisterhand vom Kurvenzentrum weg nach aussen gedrückt wird.
Lässt man ein grosses, mit Wasser gefülltes Glas um die eigene Achse rotieren, hebt sich der Spiegel entlang des Randes an. Bei gleichförmiger Rotation bildet die Wasseroberfläche ein Paraboloid.
Auf der Nordhalbkugel unserer Erde drehen sich die Hochdruckgebiete immer im Uhrzeigersinn und die Tiefdruckgebiete wirbeln gegen den Drehsinn der Uhrzeiger. Auf der südlichen Hemisphäre sind die Verhältnise gerade umgekehrt.
Therorie
Üblicherweise versteht man in der Physik unter einem Bezugssystem ein reines Referenzsystem oder Koordinatensystem, auf das der Ort und die Orientierung eines Körpers bezogen wird. Als eigentliches Beobachtunssystem kommen aber nur materielle Systeme wie Bahnwagen, Lift, Bus oder Himmelkörper in Frage. Solche Systeme können scheinbar beliebig viel Impuls und Drehimpuls aufnehmen, ohne ihr Bewegungsverhalten merklich zu ändern. Rein kinematisch darf die Bewegung eines Körpers von jedem Bezugssystem beschreiben werden, Physik betreiben im Sinne von Experimente durchführen, kann man aber nur von einem materiellen Bezugssystem aus.
Geschwindigkeit und Beschleunigung
Die Geschwindigkeit eines Punktes kann in eine Geschwindigkeit relativ zum rotierenden System und die Geschwindigkeit des Ortes auf dem rotierenden System relativ zum Ruhesystem ausgedrückt werden
[math]\vec v = \vec v_S + \vec \omega \times \vec r_S[/math]
Der Index S weistdarauf hin, dass sich diese Grösse auf das rotierende Sysem bezieht. Der Ortsvektor r, nicht aber seine Komponentendarstellung, sieht in beiden Systemen gleich aus.
Die Beschleunigung kann auf ähnliche Art und Weise zerlegt werden
[math]\dot {\vec v} = \dot {\vec v_S} + 2 (\vec \omega \times \vec v_S) + (\vec \omega \times \vec r_S) \times \vec \omega[/math]
Impulsbilanz
Die Impulsbilanz bezüglich eines kleinen Körpers kann zusammen mit dem Kapzitivgesetz zum Newtonschen Aktionsprinzip verschmolzen werden
[math]\sum_i \vec F_i + \vec F_G = m \dot {\vec v}[/math]
Nun ist die (träge) Masse nicht nur Impulskapazität sondern als schwere Masse auch noch Teil der Impulsquelle. Die an der Oberfläche eines Körpers direkt messbaren Impulsströme, die Oberflächenkrafte Fi, sind über die Impulsbilanz mit der Beschleunigung und mit der Gravitationsfeldstärke verknüpft.
[math]\sum_i \vec F_i + m \vec g = m \dot {\vec v}[/math]
Weil in beiden Termen die Masse als Faktor vorkommt (die schwere Masse ist gemäss Einstein prinzipiell nicht von der trägen zu unterscheiden (Äquivalenzprinzip)), sind Gravitationsfeldstärke und Beschleunigung des Körpers eine Frage des Bezugssystems, also Ansichtssache. Im SI sind denn auch beide Grössen mit der gleichen Einheit versehen.