Lösung zu Schwungradspeicher
- Die Winkelgeschwindigkeit beträgt: ω = 2 * π * 25'000 U/min / (60 s / min) = 2 * π * 425 1/s = Der Drehimpuls ist gleich Energie durch halbe Endwinkelgeschwindigkeit, also L = W / (ω/2) = 6 kWH / () = 16.5 kNms. Dank der hohen Drehzahl benötigt dieses Schwungrad bei etwa gleichem Energie-Speichervermögen viel weniger Drehimpuls als der Gyrobus.
- Das Massenträgheitsmoment, die Drehimpulskapazität (Grundfläche im Flüssigkeitsbild), ist gleich Drehimpuls durch Winkelgeschwindigkeit, also gleich 6.3 kgm2.
- Die Beschleunigung des Autos ist auf 6 m/s2 beschränkt. Für die Maximalgeschwindigkeit gilt [math]v = \sqrt{ar}[/math]. Die zulässige Geschwindigkeit wächst mit der Wurzel aus dem Kurvenradius: 12.2 m/s (44 km/h) bei 25 m Kurvenradius, 24.5 m/s (88 km/h) bei 100 m und 34.6 (125 km/h) bei 200 m.
- Das Auto dreht sich mit einer Winkelgeschwindigkeit von [math]\omega_S = \frac {v}{r} = \sqrt{\frac{a}{r}}[/math]. Das auf das Schwungrad ausgeübte Drehmoment ist gleich [math]M = \omega_S L = \sqrt{\frac{a}{r}}L[/math], was bei einem Kurvenradius von 200 m einen Wert von 2.86 kNm ergibt. Bei einem Radius von 100 m steigt das maximale Drehmoment auf 4 kNm an und bei einem Radius von 25 m beträgt das maximal möglich Drehmoment 8.1 kNm. Da könnte sportliches Einparken zum Problem werden.