Lösung zu Widerstand einer Heizwasserleitung

Aus SystemPhysik

1. Turbulenz

Berechnen der Reynoldszahl:

[math]Re = \frac {4 \rho I_V}{\pi d \eta} = 37'100 \gt 2300 [/math]


Berechnen der Rohrreibungszahl λ:

[math]\lambda = \frac {0.3164}{\sqrt[4]{Re}} = 0.023 [/math]

Berechnen des kritischen Volumenstroms:

[math]R_V = \frac {128 \eta l}{\pi d^4} = 7.53 * 10^6 Pa/(m^3/s), k = \lambda \frac {8 \rho l}{\pi^2d^5}= 4.02 * 10^{11} Pa/(m^3/s)^2[/math],
[math]I_{Vkrit} = \frac {R_V}{k} = 1.87 * 10^{-5} m^3/s = 0.0187 l/s[/math],

Die Strömung ist turbulent, weil der kritische Volumenstrom wesentlich kleiner als der tatsächliche Heizwasserstrom ist.