Lösung zu Fallende Kugel

Aus SystemPhysik

Der statische Auftrieb wird vernachlässigt, weil dieser kaum ins Gewicht fällt und in der Dichte eines Stoffes schon berücksichtigt ist. Kugelvolumen und -oberfläche: [math]V = \frac {4 \pi} {3} r^3, A = 4 \pi r^2[/math].

  1. Die Endgeschwindigkeit ist erreicht, wenn der Impuls der Kugel nicht mehr zunimmt, d.h. [math]\dot p = 0[/math]. Dann sind die Impulsströme gleich: Der gravitativ zufliessende Impuls wird vollständig an die Luft abgeleitet. Die Gewichtskraft und der Strömungswiderstand halten die Kugel im Gleichgewicht [math]F_G-F_W=0[/math]. Man ersetzt die Gewichtskraft durch das Produkt aus Dichte des Materials, Volumen der Kugel und Gravitationsfeldstärke, also [math]F_G =\rho V g[/math], sowie den Luftwiderstand durch die entsprechenden Einflussgrössen, nämlich [math]F_W = \frac {1} {2} \rho_L v^2 c_W A[/math]. Nun löst man die erhaltene Gleichung nach v auf und gewinnt eine Formel für die Endgeschwindigkeit: [math]v = \sqrt {\frac {8 g}{3 c_W} \frac {\rho}{\rho_L}r}[/math] = 175.8 m/s.
  2. Weil der Luftwiderstand proportional zum Quadrat der Geschwindigkeit ist, beträgt er bei der halben Endgeschwindigkeit erst ein Viertel seines Endwertes (Der Endwert des Widerstands ist so gross wie die Gewichtskraft). Die resultierende Kraft [math]F_{res} = F_G-F_W[/math] beträgt folglich 75% der Gewichtskraft und die Beschleunigung beträgt 7.36 m/s2.
  3. Weil das Verhältnis von Dichte des Materials zu Dichte der Luft 15 mal kleiner geworden ist, muss der Durchmesser 15 mal grösser, also 1.5 m gross, gewählt werden. Oder lösen Sie die Formel für die Endgeschwindigkeit nach dem Radius auf und setzen die gegebenen Werte ein.

Aufgabe