Lösung zu Energieumsatz bei Rohrleitung

Aus SystemPhysik
Version vom 18. Februar 2010, 09:42 Uhr von Thomas Rüegg (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der von einer Flüssigkeit transportierte Energiestrom setzt sich aus drei Teilen (ohne innere Energie) zusammen:

[math]I_W=(p+\rho_{W_G}+\rho_{W_{kin}})I_V=(p+\rho g h+\frac {\rho}{2}v^2)I_V[/math]

Der Volumenstrom ist an beiden Stellen gleich. An Stelle 1 kann man ihn berechnen:

[math]I_V =v_1 * A_1 = 1.5 m/s * \pi / 4 * (0.07 m)^2 = [/math] 0.00577 m3/s

Daraus kann man auch die Geschwindigkeit 2 berechnen:

[math]v_2 =v_1 * A_1 / A_2 = 1.5 m/s * (0.07 m / 0.25 m)^2 = [/math] 0.118 m/s


Folglich ist die vom Wasser umgesetzte Prozessleistung gleich

[math]P=I_{W1} - I_{W2} = \left((p_1-p_2)+\rho g(h_1 - h_2)+\frac{\rho}{2}(v_1^2 - v_2^2)\right)I_V [/math]
[math]P=\left((2.5 bar - 2.2 bar)+\rho g (2 m - 0 m)+\frac{\rho}{2} [ (1.5 m/s)^2 - (0.118 m/s)^2]\right) \cdot \ 0.00577 m^3/s [/math]
[math]P [/math] = 293 W


Aufgabe