Lösung zu Fallende Kugel
Der statische Auftrieb wird vernachlässigt, weil dieser kaum ins Gewicht fällt und in der Dichte eines Stoffes schon berücksichtigt ist.
- Die Endgeschwindigkeit ist erreicht, wenn der Impuls der Kugel nicht mehr zunimmt, d.h. [math]\dot p = 0[/math]. Dann sind die Impulsströme gleich: Der gravitativ zufliessende Impuls wird vollständig an die Luft abgeleitet. Die Gewichtskraft und der Strömungswiderstand halten die Kugel im Gleichgewicht [math]F_G-F_W=0[/math]. Man ersetzt die Gewichtskraft durch das Produkt aus Dichte des Materials, Volumen der Kugel und Gravitationsfeldstärke, also [math]F_G =\rho V g[/math], sowie den Luftwiderstand durch die entsprechenden Einflussgrössen, nämlich [math]F_W = \frac {1} {2} \rho_L v^2 c_W A[/math]. Nun löst man die erhaltene Gleichung nach v auf und gewinnt eine Formel für die Endgeschwindigkeit v: [math]v = \sqrt {\frac {8 g}{3 c_W} \frac {\rho}{\rho_L}r}[/math] = 175.8 m/s.
- Bei der halben Endgeschwindigkeit beträgt der Luftwiderstand erst ein Viertel der Endgeschwindigkeit. Die resultierende Kraft beträgt folglich 75% der Gewichtskraft und die Beschleunigung beträgt 7.36 m/s2.
- Weil das Verhältnis von Dichte des Materials zu Dichte der Luft 15 mal kleiner geworden ist, muss der Durchmesser 15 mal grösser, also 1.5 m gross, gewählt werden.