Lösung zuFrontalzusammenstoss

Aus SystemPhysik
Version vom 13. Februar 2008, 18:00 Uhr von Admin (Diskussion | Beiträge) (Die Seite wurde neu angelegt: Die erste Teilaufgabe löst man am einfachsten mit Hilfe des Flüssigkeitsbildes. #Nach dem Stoss bewegen sich die beiden Fahrzeuge mit 9.5 m/s. Die dissipierte Ene...)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Die erste Teilaufgabe löst man am einfachsten mit Hilfe des Flüssigkeitsbildes.

  1. Nach dem Stoss bewegen sich die beiden Fahrzeuge mit 9.5 m/s. Die dissipierte Energie ist gleich geflossener Impuls mal mittlere "Fallhöhe" [math]W_{diss}=\Delta p \Delta v=1.28 MJ[/math]
  2. Durch den Aufprall mit konstanter Kraft werden beide Fahrzeuge konstant beschleunigt. Der Aufprall berechnet sich aus Verformung durch mittlerer Relativgeschwindigkeit [math]t=\frac{\Delta s}{\Delta v_m}=\frac{1.3 m}{17.5 m/s}[/math] = 0.074 s.
  3. Die Aufprallkraft, die Stärke des durch die Knautschzone fliessenden Impulsstromes, ist gleich geflossener Impuls durch benötigte Zeit [math]I_p=\frac{m_1\Delta v_1}{t}=\frac{7000 kg 10.5 m/s}{0.074 s}[/math] = 989 kN.
  4. Die Prozessleistung ist gleich Stromstärke mal "Fallhöhe" [math]P=\Delta v I_p[/math]. Man darf nun annehmen, dass sich die Relativgeschwindigkeit zu jedem Zeitpunkt im Verhältnis der totalen Verformung auf die beiden Knautschzonen aufteilt [math]\frac{\Delta v_1}{\Delta v_2}=\frac{0.8 m}{0.5 m}[/math]. Zu Beginn des Aufpralls, dann wenn die Prozessleistungen am grössten sind, teilt sich die Relativgeschwindigkeit von 35 m/s in 23.5 m/s und 13.5 m/s auf die beiden Knautschzonen auf, was Prozessleistungen von 23.3 MW und 13.3 MW ergibt.

Aufgabe