Lösung zu Impulstransport im Rohr
- Die Strömungsgeschwindigkeiten sind durch die Kontinuitätsgleichung gegeben: [math]v = \frac {I_V}{A}[/math]. Also ist v1 = 2.08 m/s und v2 = 4.075 m/s.
- Die Energiebilanz, das Gesetz von Bernoulli, liefert für den Druck im zweiten Querschnitt: [math]p_2 = p_1 + \frac{\rho}{2}(v_1^2 - v_2^2)[/math] = 9.78 kPa.
- Die Flüssigkeit transportiert den Impuls leitungsartig und konvektiv. Zählt man beide Stromstärken zusammen, erhält man für die beiden Querschnittsflächen unterschiedliche Impulsstromstärken: [math]I_{px} = F_D + v_x I_m = p A + \rho \frac {I_V^2}{A})[/math] = 17.97 N und 11.73 N.
- Die Differenz der beiden Impulsstromstärken von 6.24 N muss im konisch zulauffenden Teil von der Flüssigkeit an die Rohrwand abgegeben werden.