Transportierte Menge
Die Bilanzgleichung, welche die Strom- und die Quellenstärken bezüglich eines Systems zusammen mit der Produktionsrate gleich der Änderungsrate des Inhaltes setzt, beschreibt nur einen bestimmten Zeitpunkt. Üblicherweise wird dann die Ängerungsrate über die Zeit aufintegriert, um die Evolution des Systemverhaltens zu bestimmen. Diese Integration führt ein systemdynamisches Werkzeuge automatisch aus, sobald man die Bilanz bestehend aus Fluss- und Bestandesgrössen im Systemdiagramm gezeichnet hat.
Manchmal iteressiert man sich aber direkt für die Menge, die von einem Strom in einer bestimmten Zeit transportiert worden ist. Im einfachsten Fall, dann wenn die Stromstärke konstant ist, muss man nur die Stromstärke mit der fraglichen Zeit multiplizieren, um die transportierte Menge zu erhalten.
Im allgemeinen Fall berechnet sich die transportierte Menge aus der Stromstärke, wie die Inhaltsänderung aus der Änderungsrate
[math] M_{trans} = \sum_{i=1}^n I_M (t_{i-1,i}) (t_i - t_{i-1})[/math]
Die Formel besagt, dass die ganze Zeitspanne in kleine Intervalle aufzuteilen ist. Die Summe über alle Stromstärken mal das zugehörige Intervall ergibt dann die gesamthaft transportierte Menge. Nun kann sich die Stromstärke in jedem noch so kleinen Zeitabschnitt immer noch ändern. Deshalb macht man den Grenzübergang zu beliebig kleinen Intervallen. Die Summe wird dann zum Integral der Stromstärke-Zeit-Funktion über die Zeit
[math]M_{trans} = \int_{t_a}^{t_e} I_M dt[/math]