Kreisbewegung: Unterschied zwischen den Versionen

K
 
(22 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 6: Zeile 6:
   
 
==Geometrie==
 
==Geometrie==
  +
[[Bild:Kreisbewegung.png|thumb|kartesische und Polarkoordinaten bei Kreisbewegung]]
 
Die Bewegung eines Körpers auf einer Kreisbahn beschreibt man am einfachsten mittels den Polarkoordinaten ''r'' und ''φ''. Polarkoordinaten lassen sich mit Hilfe von trigonometrischen Funktionen in kartesische Korrdinaten umrechnen
 
Die Bewegung eines Körpers auf einer Kreisbahn beschreibt man am einfachsten mittels den Polarkoordinaten ''r'' und ''φ''. Polarkoordinaten lassen sich mit Hilfe von trigonometrischen Funktionen in kartesische Korrdinaten umrechnen
   
<math>\begin{pmatrix} x \\ y \end{pmatrix} = r \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}</math>
+
:<math>\vec r = \begin{pmatrix} x \\ y \end{pmatrix} = r \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}</math>
   
 
Bei der Kreisbewegung ist ''r'' ein [[Parameter]] und ''&phi;'' eine Funktion der Zeit. Die Ableitung des Ortsvektors nach der Zeit liefert den Geschwindigkeitsvektor des kreisenden [[Referenzpunkt|Referenzpunktes]]
 
Bei der Kreisbewegung ist ''r'' ein [[Parameter]] und ''&phi;'' eine Funktion der Zeit. Die Ableitung des Ortsvektors nach der Zeit liefert den Geschwindigkeitsvektor des kreisenden [[Referenzpunkt|Referenzpunktes]]
   
<math>\begin{pmatrix} \dot x \\ \dot y \end{pmatrix} = r \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} \dot \varphi</math>
+
:<math>\dot {\vec r} = \begin{pmatrix} \dot x \\ \dot y \end{pmatrix} = r \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} \dot \varphi</math>
 
oder
 
oder
<math>\begin{pmatrix} v_x \\ v_y \end{pmatrix} = r \omega \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} = v \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}</math>
+
:<math>\begin{pmatrix} v_x \\ v_y \end{pmatrix} = r \omega \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} = v \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}</math>
   
 
Der Geschwindigkeitsvektor steht normal zum Radius. Sein Betrag ist gleich dem Produkt aus dem Betrag des Radius und der Winkelgeschwindigkeit.
 
Der Geschwindigkeitsvektor steht normal zum Radius. Sein Betrag ist gleich dem Produkt aus dem Betrag des Radius und der Winkelgeschwindigkeit.
Zeile 21: Zeile 22:
 
Das [[kapazitives Gesetz|Kapazitivgesetz]] liefert bei gegebener Geschwindigkeit des Massenmittelpunktes den Impulsinhalt des Körpers
 
Das [[kapazitives Gesetz|Kapazitivgesetz]] liefert bei gegebener Geschwindigkeit des Massenmittelpunktes den Impulsinhalt des Körpers
   
<math>\begin{pmatrix} p_x \\ p_y \end{pmatrix} = p \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}</math>
+
:<math>\vec p = \begin{pmatrix} p_x \\ p_y \end{pmatrix} = m \vec v = m v \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} = p \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}</math>
   
 
Für den Betrag des Impulsvektors gilt: ''p = m v = m &omega; r''
 
Für den Betrag des Impulsvektors gilt: ''p = m v = m &omega; r''
Zeile 27: Zeile 28:
 
Die Impulsänderungsrate erhält man durch nochmaliges Ableiten nach der Zeit
 
Die Impulsänderungsrate erhält man durch nochmaliges Ableiten nach der Zeit
   
<math>\begin{pmatrix} \dot p_x \\ \dot p_y \end{pmatrix} = \dot p \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + p \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix} \dot \varphi = \dot p \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + \omega p \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix}</math>
+
:<math>\begin{pmatrix} \dot p_x \\ \dot p_y \end{pmatrix} = \dot p \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + p \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix} \dot \varphi = \dot p \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + \omega p \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix}</math>
   
 
Der erste Term beschreibt die [[Änderungsrate]] des Impulsbetrages, der zweite Term die durch die Kreisbahn erzwungene Schwenkbewegung des Impulsvektors. Die [[Impulsbilanz]] setzt nun die Impulsänderungsrate gleich der Summe über alle Impulsstrom- und -quellenstärke. In der [[Punktmechanik]] sagt man dieser Summe resultierende [[Kraft]] und schreibt die Gleichung oft koordinatenunabhängig hin
 
Der erste Term beschreibt die [[Änderungsrate]] des Impulsbetrages, der zweite Term die durch die Kreisbahn erzwungene Schwenkbewegung des Impulsvektors. Die [[Impulsbilanz]] setzt nun die Impulsänderungsrate gleich der Summe über alle Impulsstrom- und -quellenstärke. In der [[Punktmechanik]] sagt man dieser Summe resultierende [[Kraft]] und schreibt die Gleichung oft koordinatenunabhängig hin
   
<math>\vec F_{res} = \dot p \frac {\vec p} {p} + \vec \omega \times \vec p</math>
+
:<math>\vec F_{res} = \dot p \frac {\vec p} {p} + \vec \omega \times \vec p</math>
   
 
Mit ''p'' ist der Betrag des Impulsvektors gemeint. Dass die [[Winkelgeschwindigkeit]] als Vektor geschrieben werden darf, ist mathematisch nicht einfach zu begründen. Dieser Vektor steht nach der Rechten-Hand-Regel normal zur Kreisbahnebene. Die [[Rechte-Hand-Regel|Rechte-Hand-Regel]] besagt hier, dass der Daumen der rechten Hand die Richtung der Winkelgeschwindgigkeit anzeigt, wenn die Finger im Drehsinn auf den Kreis gelegt werden.
 
Mit ''p'' ist der Betrag des Impulsvektors gemeint. Dass die [[Winkelgeschwindigkeit]] als Vektor geschrieben werden darf, ist mathematisch nicht einfach zu begründen. Dieser Vektor steht nach der Rechten-Hand-Regel normal zur Kreisbahnebene. Die [[Rechte-Hand-Regel|Rechte-Hand-Regel]] besagt hier, dass der Daumen der rechten Hand die Richtung der Winkelgeschwindgigkeit anzeigt, wenn die Finger im Drehsinn auf den Kreis gelegt werden.
Zeile 37: Zeile 38:
 
Falls die Winkelgeschwindigkeit konstant ist, also bei einer gleichförmigen Kreisbewegung, entfällt der erste Term
 
Falls die Winkelgeschwindigkeit konstant ist, also bei einer gleichförmigen Kreisbewegung, entfällt der erste Term
   
<math>\vec F_{res} = \vec \omega \times \vec p = -\omega p \frac {\vec r} {r}</math>
+
:<math>\vec F_{res} = \vec \omega \times \vec p = -\omega p \frac {\vec r} {r}</math>
   
 
Bei der [[gleichmässige Kreisbewegung|gleichmässigen Kreisbewegung]] zeigt der Vektor der resultierenden Kraft gegen das Kreiszentrum und sein Betrag ist gleich dem Produkt aus Winkelgeschwindigkeit und Impulsinhalt des Körpers.
 
Bei der [[gleichmässige Kreisbewegung|gleichmässigen Kreisbewegung]] zeigt der Vektor der resultierenden Kraft gegen das Kreiszentrum und sein Betrag ist gleich dem Produkt aus Winkelgeschwindigkeit und Impulsinhalt des Körpers.
   
 
'''Beispiele'''
 
'''Beispiele'''
  +
*Ein Auto durchfährt eine Kurve: die horizontale Komponente der resultierenden Kraft setzt sich aus Luftwiderstand und Haftreibung zusammen. Die resultierende Kraft zeigt gegen die Kreismitte (konstante Schnelligkeit), schief nach vorn (Autofahrer gibt Gas) oder schief nach hinten (Autofahrer bremst). Eine Komponente der Kraft muss aber immer gegen die Kurvenmitte zeigen, sonst kann das Auto seine Richtung nicht ändern.
*Körper bewegt sich an einem Seil festgebunden auf Glatteis im Kreis: Seilkraft ist resultierende Kraft
 
  +
*Ein Satellit "kreist" um die Erde: die resultierende Kraft besteht nur aus der Gewichts- oder Gravitationskraft (ein antriebsloser [[Satellit]] fällt gegen die Erde, verfehlt aber infolge seiner hohen Geschwindigkeit die Erdoberfläche). Die Bahn eines Satelliten ist ellipsenförmig. Die Gravitationskraft zeigt immer gegen die Erdmitte. Weist die Tangentialkomponente der Gravitationskraft nach vorne, wird der Satellit schneller, weist sie nach hinten, wird er langsamer. Am erdfernsten und am erdnächsten Punkt steht die Gewichtskraft normal zur Bahn.
*Auto durchfährt mit konstanter Tachoanzeige eine Kurve: resultierende Kraft setzt sich aus Luftwiderstand und Haftreibung zusammen
 
*Flugzeug kreist über dem Rheinfall: resultierende Kraft setzt sich aus Kraft der Luft (Auftrieb und Widerstand) und der Gewichtskraft zusammen
 
*Geostationärer Satellit kreist um die Erde: resultierende Kraft ist die Gewichts- oder Gravitationskraft (ein antriebsloser [[Satellit]] fällt gegen die Erde, verfehlt aber infolge seiner hohen Geschwindigkeit die Erdoberfläche)
 
   
 
==Energiebetrachtung==
 
==Energiebetrachtung==
Wird die Kreisbewegung durch einen einzigen Impulsstrom, eine einzige Kraft, verursacht, kann der zugeordnete Energiestrom berechnet werden
+
Wird die Kreisbewegung durch einen einzigen Impulsstrom, eine einzige [[Kraft]], verursacht, kann der [[zugeordneter Energiestrom|zugeordnete Energiestrom]] durch das Skalarprodukt aus Geschwindigkeit und Impulsänderungsrate ausgedrückt werden (in diesem Fall ist die Impulsänderungsrate gleich gross wie die Impulsstromstärke)
   
<math>I_W = v_x I_{Wx} + v_y I_{Wy} + v_z I_{Wz} = v \dot p [\sin^2 \varphi + \cos^2 \varphi] + v \omega p [\sin \varphi \cos \varphi - \cos \varphi \sin \varphi] = v \dot p</math>
+
:<math>I_W = v_x \dot p_x + v_y \dot p_y + v_z \dot p_z = v \dot p [\sin^2 \varphi + \cos^2 \varphi] + v \omega p [\sin \varphi \cos \varphi - \cos \varphi \sin \varphi] = v \dot p</math>
   
Der zugeordnete Energiestrom ist gleich dem Produkt der Schnelligkeit (Betrag der Geschwindigkeit) mal die [[Änderungsrate]] des Impulsbetrages. Der Energiestrom verschwindet bei einer gleichförmigen Kreisbewegung. Sobald mehrere Impulsströme im Spiel sind (kreisendes Flugzeug, Kurvenfahrt eines Schnellzuges) verschwindet nur die Summe über alle Energieströme, nicht aber die den einzelnen Impulsströmen zugeordneten Energieströme.
+
Der zugeordnete Energiestrom ist gleich dem Produkt aus [[Schnelligkeit]] (Betrag der Geschwindigkeit) und [[Änderungsrate]] des Impulsbetrages. Dieser Energiestrom verschwindet bei einer [[gleichmässige Kreisbewegung|gleichmässigen Kreisbewegung]], weil dann der Betrag des Impulses konstant bleibt. Sobald mehrere Impulsströme im Spiel sind, mehrer Kräfte wirken (kreisendes Flugzeug, Kurvenfahrt eines Schnellzuges), verschwindet bei der gleichmässigen Kreisbewegung nur die Summe über alle Energieströme, nicht aber die den einzelnen Impulsströmen zugeordneten Energieströme.
   
 
Setzt man den resultierenden Energiestrom in die Energiebilanz ein, bekommt man die [[Änderungsrate]] der kinetischen Energie
 
Setzt man den resultierenden Energiestrom in die Energiebilanz ein, bekommt man die [[Änderungsrate]] der kinetischen Energie
   
<math>I_W = \dot W_{kin}^2 = (0.5 m v^2\dot) = m v \dot v = v \dot p</math>
+
:<math>I_W = \dot W_{kin} = \frac {m}{2}(v^2\dot) = m v \dot v = v \dot p</math>
   
Die Energiebilanz folgt - wie in der ganzen Mechanik der homogenen Systeme - direkt aus der Impulsbilanz.
+
Die Energiebilanz folgt somit - wie in der ganzen Mechanik der homogenen Systeme - direkt aus der Impulsbilanz. Die Änderungsrate der [[kinetische Energie|kinetischen Energie]] eines Körpers ist demnach immer gleich Geschwindigkeit mal Änderungsrate des Impulses.
   
 
Ein Körper, der auf einer Kreisbahn gehalten wird, tauscht dauernd Impuls mit der Umgebung aus. Aber nur wenn sich der Betrag des Impulsinhaltes ändert, nimmt auch die kinetische Energie zu oder ab.
 
Ein Körper, der auf einer Kreisbahn gehalten wird, tauscht dauernd Impuls mit der Umgebung aus. Aber nur wenn sich der Betrag des Impulsinhaltes ändert, nimmt auch die kinetische Energie zu oder ab.
   
 
==Punktmechanik==
 
==Punktmechanik==
  +
[[Bild:Kreisbewegung2.png|thumb|Normal- und Tangentialbeschleunigung bei einer Kreisbewegung]]
In der Modellstruktur der Punktmechanik untersucht man Körper ohne Ausdehnung unter der Wirkung von Zentralkräften (Wechselwirkungspaare zwischen den einzelnen Punkten). Bei der Kreisbewegung beschränkt man sich auf einen einzigen Körper, der unter der Wirkung von Kräften einer vorgegebenen Kreisbahn folgt. Die resultierende Kraft ist dann gemäss dem Aktionsprinzip von Newton über die Beschleunigung definiert.
+
In der Modellstruktur der [[Punktmechanik]] untersucht man die Bewegung von punkförmigen Körpern unter der Wirkung von Zentralkräften (Wechselwirkungspaare zwischen den einzelnen Punkten). Bei der Kreisbewegung beschränkt man sich auf einen einzigen Körper, der unter der Wirkung von Kräften einer vorgegebenen Kreisbahn folgt. Die resultierende Kraft ist dann gemäss dem Aktionsprinzip von [[Newtonsche Axiome|Newton]] über die Beschleunigung definiert.
   
 
Die Beschleunigung bei Kreisbewegungen erhält man durch nochmaliges Ableiten der Geschwindigkeit nach der Zeit
 
Die Beschleunigung bei Kreisbewegungen erhält man durch nochmaliges Ableiten der Geschwindigkeit nach der Zeit
   
<math>\begin{pmatrix} \dot v_x \\ \dot v_y \end{pmatrix} = \dot v \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + v \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix} \dot \varphi = a_t \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + a_n \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix}</math>
+
:<math>\begin{pmatrix} \dot v_x \\ \dot v_y \end{pmatrix} = \dot v \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + v \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix} \dot \varphi = a_t \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + a_n \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix}</math>
   
Die Beschleunigung zerfällt in einen Anteil, der in Bewegungsrichtung zeigt (''a<sub>t</sub> = dv/dt''), und einen Anteil, der normal zur Bewegungsrichtung steht, also zur Kreismitte gerichtet ist (''a<sub>n</sub> = v &omega; = r &omega;<sup>2</sup> = v<sup>2</sup> / r'' ). Im Alltag wird nur die Tangentialbeschleunigung ''a<sub>t</sub>'' als Beschleunigung (Betrag der Geschwindigkeit nimmt zu) oder als Verzögerung (Betrag der Geschwindigkeit nimmt ab) wahrgenommen. Die Normalbeschleunigung, welche nicht mit einer Änderung der kinetischen Energie verbunden ist, wird deshalb nicht als solche akzeptiert.
+
Die Beschleunigung zerfällt in einen Anteil, der in Bewegungsrichtung zeigt (''a<sub>t</sub> = dv/dt''), und einen Anteil, der normal zur Bewegungsrichtung steht, also zur Kreismitte gerichtet ist (''a<sub>n</sub> = v &omega; = r &omega;<sup>2</sup> = v<sup>2</sup> / r'' ). Im [[Alltagsmechanik|Alltag]] wird nur die Tangentialbeschleunigung ''a<sub>t</sub>'' als Beschleunigung (Betrag der Geschwindigkeit nimmt zu) oder als Verzögerung (Betrag der Geschwindigkeit nimmt ab) wahrgenommen. Die Normalbeschleunigung gilt in der Umgangssprache nicht als Beschleunigung.
   
 
Die Dynamik der Kreisbewegung sollte nach mehr als zweihundert Jahren [[Newtonsche Axiome|Newtonscher Mechanik]] eigentlich keine ernsthaften Probleme mehr bereiten. Didaktische Untersuchungen haben aber gezeigt, dass die Mehrheit einer Gruppe von Physik Studierenden bei der Kreisfahrt eines Autos weder in der Lage ist, Kräfte korrekt einzuzeichnen, noch die Richtung der Beschleunigung einigermassen richtig anzugeben weiss [JUNG, W., WIESNER, H.: ''Verständnisschwierigkeiten beim physikalischen Kraftbegriff''. Eine Untersuchung zum Kraftbegriff bei Physikstudenten. In: Physik und Didaktik 2/1981, S. 111-122]. Was erzählen wohl diese ehemaligen Studenten, von denen viele als Physiklehrer tätig sein dürften, heute ihren Schülerinnen und Schülern?
Solange man Körper auf Massenpunkte reduziert, unterscheidet sich die [[Physik der dynamischen Systeme|systemdynamische Beschreibung]] kaum von der punktmechanischen. Obwohl die gestalterische Kraft der Physik der dynamischen Systeme weit über die Punktmechanik hinausreicht, sorgt sie auch bei der Kreisbewegung eines Massenpunktes für mehr Klarheit. Ein Massenpunkt tauscht mit der Umwelt Impuls und Energie aus. Wer konsistent beschreiben kann, was mit den mengenartigen Grössen Impuls und Energie geschieht, kommt leichter zu einer widerspruchsfreien Darstellung eines mechanischen Modells.
 
   
  +
==Siehe auch==
Die Dynamik der Kreisbewegung solle nach mehr als zweihundert Jahren Newtonscher Mechanik eigentlich keine ernsthaften Probleme mehr aufwerfen. Nun haben Untersuchungen gezeigt, dass die Mehrheit von Physik Studierenden bei der Kreisfahrt eines Autos weder in der Lage ist, Kräfte korrekt einzuzeichnen, noch die Richtung der Beschleunigung einigermassen richtig angeben kann [JUNG, W., WIESNER, H.: ''Verständnisschwierigkeiten beim physikalischen Kraftbegriff''. Eine Untersuchung zum Kraftbegriff bei Physikstudenten. In: Physik und Didaktik 2/1981, S. 111-122]. Was erzählen wohl diese Probanden, von denen viele als Physiklehrer tätig sein dürften, heute ihren Schülerinnen und Schülern?
 
  +
*[[Erzwungene Kreisbewegung]]
  +
*[http://www.youtube.com/watch?v=62ssS0Eow9s Video mit Animation]
  +
*[https://cast.switch.ch/vod/clips/1kmkuy0vb0/link_box Video der Vorlesung]
  +
*[http://www.youtube.com/watch?v=16HiNCBJAeg Kreisbewegung] auf Youtube
   
 
[[Kategorie:Trans]]
 
[[Kategorie:Trans]]

Aktuelle Version vom 19. November 2017, 13:35 Uhr

Ein Körper, der sich auf einer Kreisbahn bewegt, muss mit der Umgebung andauernd Impuls austauschen. Die Impulsänderungsrate heisst auch resultierende Kraft auf den Körper. Die Normalkomponente dieser resultierenden Kraft zeigt gegen die Kreismitte. Die Normalkomonente der resultierenden Kraft ändert die Bewegungsrichtung, die Tangentialkomponente die Schnelligkeit des Körpers.

Die Kreisbewegung gibt Anlass zu mehreren Missverständnissen:

  • Weil nur die Tangentialkomponente der Kraft eine Leistung besitzt, spricht man in der Umgangssprache bei der gleichmässigen Kreisbewegung von einem unbeschleunigten Vorgang.
  • Die gegen die Kreismitte weisende Beschleunigung wird oft nach aussen gedreht und als zentrifugal bezeichnet. Diese Betrachtungsweise bezieht sich auf einen rotierenden Beobachter. In einem rotierenden System herrscht ein Zentrifugalfeld. Die zugehörige Feldstärke gzf ist an jedem Punkt entgegengesetzt gleich gross wie die Beschleunigung an, die ein aussenstehender Beobachter diesem Punkt des rotierenden Systems zuschreiben würde.

Geometrie

kartesische und Polarkoordinaten bei Kreisbewegung

Die Bewegung eines Körpers auf einer Kreisbahn beschreibt man am einfachsten mittels den Polarkoordinaten r und φ. Polarkoordinaten lassen sich mit Hilfe von trigonometrischen Funktionen in kartesische Korrdinaten umrechnen

[math]\vec r = \begin{pmatrix} x \\ y \end{pmatrix} = r \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}[/math]

Bei der Kreisbewegung ist r ein Parameter und φ eine Funktion der Zeit. Die Ableitung des Ortsvektors nach der Zeit liefert den Geschwindigkeitsvektor des kreisenden Referenzpunktes

[math]\dot {\vec r} = \begin{pmatrix} \dot x \\ \dot y \end{pmatrix} = r \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} \dot \varphi[/math]

oder

[math]\begin{pmatrix} v_x \\ v_y \end{pmatrix} = r \omega \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} = v \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}[/math]

Der Geschwindigkeitsvektor steht normal zum Radius. Sein Betrag ist gleich dem Produkt aus dem Betrag des Radius und der Winkelgeschwindigkeit.

Impulsbilanz

Das Kapazitivgesetz liefert bei gegebener Geschwindigkeit des Massenmittelpunktes den Impulsinhalt des Körpers

[math]\vec p = \begin{pmatrix} p_x \\ p_y \end{pmatrix} = m \vec v = m v \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} = p \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}[/math]

Für den Betrag des Impulsvektors gilt: p = m v = m ω r

Die Impulsänderungsrate erhält man durch nochmaliges Ableiten nach der Zeit

[math]\begin{pmatrix} \dot p_x \\ \dot p_y \end{pmatrix} = \dot p \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + p \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix} \dot \varphi = \dot p \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + \omega p \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix}[/math]

Der erste Term beschreibt die Änderungsrate des Impulsbetrages, der zweite Term die durch die Kreisbahn erzwungene Schwenkbewegung des Impulsvektors. Die Impulsbilanz setzt nun die Impulsänderungsrate gleich der Summe über alle Impulsstrom- und -quellenstärke. In der Punktmechanik sagt man dieser Summe resultierende Kraft und schreibt die Gleichung oft koordinatenunabhängig hin

[math]\vec F_{res} = \dot p \frac {\vec p} {p} + \vec \omega \times \vec p[/math]

Mit p ist der Betrag des Impulsvektors gemeint. Dass die Winkelgeschwindigkeit als Vektor geschrieben werden darf, ist mathematisch nicht einfach zu begründen. Dieser Vektor steht nach der Rechten-Hand-Regel normal zur Kreisbahnebene. Die Rechte-Hand-Regel besagt hier, dass der Daumen der rechten Hand die Richtung der Winkelgeschwindgigkeit anzeigt, wenn die Finger im Drehsinn auf den Kreis gelegt werden.

Falls die Winkelgeschwindigkeit konstant ist, also bei einer gleichförmigen Kreisbewegung, entfällt der erste Term

[math]\vec F_{res} = \vec \omega \times \vec p = -\omega p \frac {\vec r} {r}[/math]

Bei der gleichmässigen Kreisbewegung zeigt der Vektor der resultierenden Kraft gegen das Kreiszentrum und sein Betrag ist gleich dem Produkt aus Winkelgeschwindigkeit und Impulsinhalt des Körpers.

Beispiele

  • Ein Auto durchfährt eine Kurve: die horizontale Komponente der resultierenden Kraft setzt sich aus Luftwiderstand und Haftreibung zusammen. Die resultierende Kraft zeigt gegen die Kreismitte (konstante Schnelligkeit), schief nach vorn (Autofahrer gibt Gas) oder schief nach hinten (Autofahrer bremst). Eine Komponente der Kraft muss aber immer gegen die Kurvenmitte zeigen, sonst kann das Auto seine Richtung nicht ändern.
  • Ein Satellit "kreist" um die Erde: die resultierende Kraft besteht nur aus der Gewichts- oder Gravitationskraft (ein antriebsloser Satellit fällt gegen die Erde, verfehlt aber infolge seiner hohen Geschwindigkeit die Erdoberfläche). Die Bahn eines Satelliten ist ellipsenförmig. Die Gravitationskraft zeigt immer gegen die Erdmitte. Weist die Tangentialkomponente der Gravitationskraft nach vorne, wird der Satellit schneller, weist sie nach hinten, wird er langsamer. Am erdfernsten und am erdnächsten Punkt steht die Gewichtskraft normal zur Bahn.

Energiebetrachtung

Wird die Kreisbewegung durch einen einzigen Impulsstrom, eine einzige Kraft, verursacht, kann der zugeordnete Energiestrom durch das Skalarprodukt aus Geschwindigkeit und Impulsänderungsrate ausgedrückt werden (in diesem Fall ist die Impulsänderungsrate gleich gross wie die Impulsstromstärke)

[math]I_W = v_x \dot p_x + v_y \dot p_y + v_z \dot p_z = v \dot p [\sin^2 \varphi + \cos^2 \varphi] + v \omega p [\sin \varphi \cos \varphi - \cos \varphi \sin \varphi] = v \dot p[/math]

Der zugeordnete Energiestrom ist gleich dem Produkt aus Schnelligkeit (Betrag der Geschwindigkeit) und Änderungsrate des Impulsbetrages. Dieser Energiestrom verschwindet bei einer gleichmässigen Kreisbewegung, weil dann der Betrag des Impulses konstant bleibt. Sobald mehrere Impulsströme im Spiel sind, mehrer Kräfte wirken (kreisendes Flugzeug, Kurvenfahrt eines Schnellzuges), verschwindet bei der gleichmässigen Kreisbewegung nur die Summe über alle Energieströme, nicht aber die den einzelnen Impulsströmen zugeordneten Energieströme.

Setzt man den resultierenden Energiestrom in die Energiebilanz ein, bekommt man die Änderungsrate der kinetischen Energie

[math]I_W = \dot W_{kin} = \frac {m}{2}(v^2\dot) = m v \dot v = v \dot p[/math]

Die Energiebilanz folgt somit - wie in der ganzen Mechanik der homogenen Systeme - direkt aus der Impulsbilanz. Die Änderungsrate der kinetischen Energie eines Körpers ist demnach immer gleich Geschwindigkeit mal Änderungsrate des Impulses.

Ein Körper, der auf einer Kreisbahn gehalten wird, tauscht dauernd Impuls mit der Umgebung aus. Aber nur wenn sich der Betrag des Impulsinhaltes ändert, nimmt auch die kinetische Energie zu oder ab.

Punktmechanik

Normal- und Tangentialbeschleunigung bei einer Kreisbewegung

In der Modellstruktur der Punktmechanik untersucht man die Bewegung von punkförmigen Körpern unter der Wirkung von Zentralkräften (Wechselwirkungspaare zwischen den einzelnen Punkten). Bei der Kreisbewegung beschränkt man sich auf einen einzigen Körper, der unter der Wirkung von Kräften einer vorgegebenen Kreisbahn folgt. Die resultierende Kraft ist dann gemäss dem Aktionsprinzip von Newton über die Beschleunigung definiert.

Die Beschleunigung bei Kreisbewegungen erhält man durch nochmaliges Ableiten der Geschwindigkeit nach der Zeit

[math]\begin{pmatrix} \dot v_x \\ \dot v_y \end{pmatrix} = \dot v \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + v \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix} \dot \varphi = a_t \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} + a_n \begin{pmatrix} -\cos \varphi \\ -\sin \varphi \end{pmatrix}[/math]

Die Beschleunigung zerfällt in einen Anteil, der in Bewegungsrichtung zeigt (at = dv/dt), und einen Anteil, der normal zur Bewegungsrichtung steht, also zur Kreismitte gerichtet ist (an = v ω = r ω2 = v2 / r ). Im Alltag wird nur die Tangentialbeschleunigung at als Beschleunigung (Betrag der Geschwindigkeit nimmt zu) oder als Verzögerung (Betrag der Geschwindigkeit nimmt ab) wahrgenommen. Die Normalbeschleunigung gilt in der Umgangssprache nicht als Beschleunigung.

Die Dynamik der Kreisbewegung sollte nach mehr als zweihundert Jahren Newtonscher Mechanik eigentlich keine ernsthaften Probleme mehr bereiten. Didaktische Untersuchungen haben aber gezeigt, dass die Mehrheit einer Gruppe von Physik Studierenden bei der Kreisfahrt eines Autos weder in der Lage ist, Kräfte korrekt einzuzeichnen, noch die Richtung der Beschleunigung einigermassen richtig anzugeben weiss [JUNG, W., WIESNER, H.: Verständnisschwierigkeiten beim physikalischen Kraftbegriff. Eine Untersuchung zum Kraftbegriff bei Physikstudenten. In: Physik und Didaktik 2/1981, S. 111-122]. Was erzählen wohl diese ehemaligen Studenten, von denen viele als Physiklehrer tätig sein dürften, heute ihren Schülerinnen und Schülern?

Siehe auch