Lego-Prinzip: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
KKeine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(Eine dazwischenliegende Version von einem anderen Benutzer wird nicht angezeigt)
Zeile 1: Zeile 1:
Die [[Physik der dynamischen Systeme]] beschreibt die Natur mit einem Satz von möglichst einfachen Begriffen und Regeln. Zentral sind die Bilanz der sieben [[Primärgrösse|Primärgrössen]], die konstitutiven Gesetze ([[kapazitives Gesetz|kapazitive Gesetze]], [[resistives Gesetz|resistive Gesetze]], [[induktives Gesetz|induktive Gesetze]], [[Prozesskopplung|Prozesskopplungen]]) sowie einer klar definierten Rolle der [[Energie]].
Das Lego-Prinzip besagt, dass ein komplexes [[System]] in der Regel aus einzelnen Bausteinen zusammengesetzt werden kann. Wenn man nun einen möglichst umfassenden Bausatz entwickelt und die einzelnen Bausteine einzeln modelliert, kann das Gesamtmodell schnell aus den Modellbausteinen zusammengesetzt werden.


Baut man in den verschiedenen Zweigen der Physik einfache Modelle für Speicher, Widerstände, Induktivitäten und Antriebssysteme, können mit diesen Bausteinen komplexe [[System|Systeme]] simuliert werden. Das Lego-Prinzip besagt nun, dass jedes [[System]] nachgebaut werden kann, falls der Satz an elementaren Bausteinen vollständig ist.
[[Modelica]] ist die Sprache, mit der das Lego-Prinzip effizient umgesetzt werden kann.

[[Modelica]] ist die Sprache, mit der das Lego-Prinzip effizient umgesetzt wird.


[[Kategorie:Basis]]
[[Kategorie:Basis]]

Aktuelle Version vom 29. Oktober 2006, 19:22 Uhr

Die Physik der dynamischen Systeme beschreibt die Natur mit einem Satz von möglichst einfachen Begriffen und Regeln. Zentral sind die Bilanz der sieben Primärgrössen, die konstitutiven Gesetze (kapazitive Gesetze, resistive Gesetze, induktive Gesetze, Prozesskopplungen) sowie einer klar definierten Rolle der Energie.

Baut man in den verschiedenen Zweigen der Physik einfache Modelle für Speicher, Widerstände, Induktivitäten und Antriebssysteme, können mit diesen Bausteinen komplexe Systeme simuliert werden. Das Lego-Prinzip besagt nun, dass jedes System nachgebaut werden kann, falls der Satz an elementaren Bausteinen vollständig ist.

Modelica ist die Sprache, mit der das Lego-Prinzip effizient umgesetzt wird.