System Dynamics: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
 
(10 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
'''System Dynamics''' (SD) oder '''Systemdynamik''' ist eine von Jay W. Forrester an der Sloan School of Management des Massachusetts Institute of Technology (MIT) entwickelte Methodik zur ganzheitlichen Modellbildung und Simulation komplexer, dynamischer [[System]]e.
'''System Dynamics''' (SD) oder '''Systemdynamik''' ist eine von Jay W. Forrester an der Sloan School of Management des Massachusetts Institute of Technology (MIT) entwickelte Methodik zur ganzheitlichen Modellbildung und Simulation komplexer, dynamischer [[System]]e.


Heute wird die systemdynamische Modellierungstechnik hauptsächlich im sozio-ökonomischen sowie ökologischen Bereich angewendet. Das didaktische Potenzial der sytemdynamischen Modellbildung ist bei weitem noch nicht ausgeschöpft. Der [http://www.sysdyn.ch Verein zur Förderung der Systemdynamik im Unterricht] bildet laufend Lehrkräfte aller Stufen und Fachrichtungen aus, um der Systemdynamik in die Schulzimmer zu bringen.
Heute wird die systemdynamische Modellierungstechnik hauptsächlich im sozio-ökonomischen sowie ökologischen Bereich angewendet. Um das didaktische Potenzial der sytemdynamischen Modellbildung voll auszuschöpfen, bildet der [http://www.sysdyn.ch Verein zur Förderung der Systemdynamik im Unterricht] in Kursen und an Tagungen Lehrkräfte aller Stufen und Fachrichtungen aus.


Kennzeichnend für SD ist die Identifikation und Untersuchung in sich geschlossener Wirkungsketten (engl.: ''feedback loops''). Unterschieden werden dabei Loops mit positiver (''reinforcing loops'') und negativen (''balancing loops'') Rückkopplung. Positive Rückkopplung verstärkt die Dynamik, negative schwächt sie ab.
Kennzeichnend für SD ist die Identifikation und Untersuchung in sich geschlossener Wirkungsketten (engl.: ''feedback loops''). Unterschieden werden dabei Loops mit positiver (''reinforcing loops'') und negativen (''balancing loops'') Rückkopplung. Positive Rückkopplung verstärkt die Dynamik, negative schwächt sie ab.


Die Darstellung in [[Systemdiagramm|Systemdiagrammen]] und deren Simulation ermöglicht ein unwahrscheinlich tiefes Systemverständnis. Speicher (''Stocks'') und Ströme (''Flows'') dienen der Beschreibung der grundlegenden Systemzusammenhänge, der Bilanzen. Mit Wirkpfeilen (''Arrows'') und Zusatzelementen (''Auxiliaries'') werden die Rückkopplungen formuliert. Spezielle Softwareprogramme wie ''STELLA'', ''BerkeleyMadonna'', ''Vensim'' oder ''Powersim'' simulieren die systemdynamischen Modelle mit zum Teil recht effizienten numerischen Algoritmen. Die Simulation unterschiedlicher Szenarien (''Runs'') fördert das Verständnis für das Systemverhalten, sowie die Sensitivität bezüglich Parameter und Anfangsbedingunen.
Die Darstellung in [[Systemdiagramm|Systemdiagrammen]] und deren Simulation ermöglicht ein unwahrscheinlich tiefes Systemverständnis. Speicher (''Stocks'') und Ströme (''Flows'') dienen der Beschreibung der grundlegenden Systemzusammenhänge, der Bilanzen. Mit Wirkpfeilen (''Arrows'') und Zusatzelementen (''Auxiliaries'') werden die Rückkopplungen formuliert. Spezielle Softwareprogramme wie ''[[STELLA]]'', ''[[BerkeleyMadonna]]'', ''[[Vensim]]'' oder ''[[Powersim]]'' simulieren die systemdynamischen Modelle mit zum Teil recht effizienten numerischen Algoritmen. Die Simulation unterschiedlicher Szenarien (''Runs'') fördert das Verständnis für das Systemverhalten, sowie die Sensitivität bezüglich Parameter und Anfangsbedingunen.


Den immer wiederkehrenden Verhaltensmustern komplexer Systeme liegen bestimmte Strukturen zugrunde, die als vereinfachte Modelle dargestellt werden können, sogenannte [[Systemarchetypen]]. Momentan werden 10 verschiedene solcher Systemarchetypen unterschieden.
Den immer wiederkehrenden Verhaltensmustern komplexer Systeme liegen bestimmte Strukturen zugrunde, die als vereinfachte Modelle dargestellt werden können, sogenannte [[Systemarchetypen]]. Momentan werden 10 verschiedene solcher Systemarchetypen unterschieden.
Zeile 13: Zeile 13:


==SD und Physik==
==SD und Physik==
Zu Beginn der neunziger Jahren haben Studierende der Maschinenbauabteilung des damaligen Technikums Winterthur (TWI) erste Systeme mit dem STELLA modelliert. Das didaktische Potenzial der Synthese von [[Karlsruher Physikkurs]] und systemdynamischer Modellierung ist rasch erkannt und in mehreren Schritten in ein tragfähiges Curriculum umgesetzt worden. In der Zwischenzeit wird an einigen pädagogischen Hochschulen und mehreren Berufsmittelschulen die [[Physik der dynamischen Systeme]] unterrichtet. Die Akzeptanz unter den Studierenden und Schülern ist sehr hoch, falls die Lehrkraft über eine solide theoretisches Basis verfügt und mit der systemdynamischen Modellierungsmethode (System Thinking) vertraut ist. Leider sind die Verhältnisse an vielen Schulen dermassen katastrophal und die verwendeten Lehrmittel mit so groben [http://www.zhwi.ch/~mau/Horrorkabinett Fehlern] durchsetzt, dass die zur Verfügung stehenden Steuermittel kaum ausreichen werden, im Gebiet des Physikunterrichtes den schon längst überfälligen Innovationsschub auszulösen.
Zu Beginn der neunziger Jahren haben Studierende der Maschinenbauabteilung des damaligen Technikums Winterthur ([[TWI]]) erste Systeme mit dem STELLA modelliert. Das didaktische Potenzial der Synthese von [[Karlsruher Physikkurs]] und systemdynamischer Modellierung ist rasch erkannt und in mehreren Schritten in ein tragfähiges Curriculum umgesetzt worden. In der Zwischenzeit wird an einigen pädagogischen Hochschulen und mehreren Berufsmittelschulen die [[Physik der dynamischen Systeme]] unterrichtet. Die Akzeptanz unter den Studierenden und Schülern ist sehr hoch, falls die Lehrkraft über eine solide theoretisches Basis verfügt und mit der systemdynamischen Modellierungsmethode (System Thinking) vertraut ist.


Die Systemdynamik erlaubt nicht nur die effiziente Modellierung von komplexen, dynamischen Sytemen, sie erhellt geradezu die Struktur der Physik. Wer diese Struktur durchschaut und den Transfer einzelner Basisgesetze von einem Gebiet ins andere geschafft hat, spielt in einer höheren Liga und wundert sich, wie man leider allzuhäufig pyhsikalisches Denken mit Formelrechnen verwechselt. Die nachfolgende Erklärung beschränkt sich auf das Skelett der [[Physik der dynamischen Systeme]]. Wer Fleisch sehen will, führe sich ein paar [[:Category:Modelle|Modelle]] zu Gemüte.
Die Systemdynamik erlaubt nicht nur die effiziente Modellierung von komplexen, dynamischen Sytemen, sie erhellt geradezu die Struktur der Physik. Wer diese Struktur durchschaut und den Transfer einzelner Basisgesetze von einem Gebiet ins andere geschafft hat, kann kreativ mit den Grundgesetzen der Natur umgehen. Die nachfolgende Erklärung beschränkt sich auf das Skelett der [[Physik der dynamischen Systeme]]. Wer Fleisch sehen will, führe sich ein paar [[:Category:Modelle|Modelle]] zu Gemüte.


==Bilanzen==
==Bilanzen==
[[Bild:SD_Bilanz.jpg|thumb|Mengenbilanz bezüglich zwei Systemen]]
Die klassische Physik kennt neben der [[Energie]] sieben weitere mengenartige oder bilanzierfähige Grössen: [[Masse]], [[Volumen]], [[Impuls]], [[Drehimpuls]], [[elektrische Ladung]], [[Entropie]] und [[Stoffmenge]]. Masse, Impuls, Drehimpuls sowie elektrische Ladung bleiben bei allen Prozessen erhalten. Entropie kann erzeugt, aber nicht vernichtet werden.
Die klassische Physik kennt neben der [[Energie]] sieben weitere mengenartige oder bilanzierfähige Grössen: [[Masse]], [[Volumen]], [[Impuls]], [[Drehimpuls]], [[elektrische Ladung]], [[Entropie]] und [[Stoffmenge]]. Masse, Impuls, Drehimpuls sowie elektrische Ladung bleiben bei allen Prozessen erhalten. Entropie kann erzeugt, aber nicht vernichtet werden.


Zeile 23: Zeile 24:


==konstitutive Gesetze==
==konstitutive Gesetze==
[[Bild:SD_Gesetze.jpg|thumb|Kapazitives, resistives und induktives Gesetz]]
Die konstitutiven Gesetze ordnen der gespeicherten Menge ein Potenzial zu ([[kapazitives Gesetz]]), stellen einen Zusammenhang zwischen Stromstärke und Potenzialdifferenz ([[resistives Gesetz]]) oder zwischen Änderungsrate der Stromstärke und Potenzialdifferenz ([[induktives Gesetz]]) her.
Die konstitutiven Gesetze ordnen der gespeicherten Menge ein Potenzial zu ([[kapazitives Gesetz]]), stellen einen Zusammenhang zwischen Stromstärke und Potenzialdifferenz ([[resistives Gesetz]]) oder zwischen Änderungsrate der Stromstärke und Potenzialdifferenz ([[induktives Gesetz]]) her.


Zeile 28: Zeile 30:


==Rolle der Energie==
==Rolle der Energie==
[[Bild:SD_Energie.jpg|thumb|Zugeordnete Energieströme und Prozessleistung]]
Die [[Physik der dynamischen Systeme]] weist der Energie eine klar definierte Rolle zu: Energie wird nur zusammen mit mindestens einer zweiten mengenartigen Grösse, dem [[Energieträger]], zwischen zwei Systemen ausgetauscht. Die bezüglich einer [[Referenzfläche]] pro Zeit transportierte Energie nennt man den [[zugeordneter Energiestrom|zugeordneten Energiestrom]]. Die Stärke des zugeordneten Energiestromes ist gleich Trägerstromstärke mal zugehöriges Potenzial. Durchfliesst der Trägerstrom eine Potenzialdifferenz wird eine [[Prozessleistung]] (Stromstärke mal Potenzialdifferenz) umgesetzt.

Die systemdynamische Darstellung der grundlegenden physikalsichen Prozesse mit Bilanz, konstitutiven Gesetzen und Rolle der Energie besitzt eine unwahrscheinliche Stringenz. Wer das Sytemdiagramm betrachtet und eine gewisses Fertigkeit in Physik und im Systemdenken besetzt, weiss nach einem kurzen Blick auf das Systemdiagramm, welches Modell sie oder er vor sich hat.

== Weblinks ==
*[http://www.systemdynamics.org/ System Dynamics Society]
*[http://web.mit.edu/sdg/www/index2.html MIT System Dynamics Group]
*[http://www.sysdyn.ch/ Systemdynamik im Unterricht]
*[http://www.systemdynamics-swisschapter.ch/ Swiss Chapter of the International System Dynamics Society]
*[http://www.systemdynamics.de/ Deutsche Gesellschaft für System Dynamics e.V.]


[[Kategorie:Basis]]

Aktuelle Version vom 14. Juli 2008, 14:16 Uhr

Geschichte

System Dynamics (SD) oder Systemdynamik ist eine von Jay W. Forrester an der Sloan School of Management des Massachusetts Institute of Technology (MIT) entwickelte Methodik zur ganzheitlichen Modellbildung und Simulation komplexer, dynamischer Systeme.

Heute wird die systemdynamische Modellierungstechnik hauptsächlich im sozio-ökonomischen sowie ökologischen Bereich angewendet. Um das didaktische Potenzial der sytemdynamischen Modellbildung voll auszuschöpfen, bildet der Verein zur Förderung der Systemdynamik im Unterricht in Kursen und an Tagungen Lehrkräfte aller Stufen und Fachrichtungen aus.

Kennzeichnend für SD ist die Identifikation und Untersuchung in sich geschlossener Wirkungsketten (engl.: feedback loops). Unterschieden werden dabei Loops mit positiver (reinforcing loops) und negativen (balancing loops) Rückkopplung. Positive Rückkopplung verstärkt die Dynamik, negative schwächt sie ab.

Die Darstellung in Systemdiagrammen und deren Simulation ermöglicht ein unwahrscheinlich tiefes Systemverständnis. Speicher (Stocks) und Ströme (Flows) dienen der Beschreibung der grundlegenden Systemzusammenhänge, der Bilanzen. Mit Wirkpfeilen (Arrows) und Zusatzelementen (Auxiliaries) werden die Rückkopplungen formuliert. Spezielle Softwareprogramme wie STELLA, BerkeleyMadonna, Vensim oder Powersim simulieren die systemdynamischen Modelle mit zum Teil recht effizienten numerischen Algoritmen. Die Simulation unterschiedlicher Szenarien (Runs) fördert das Verständnis für das Systemverhalten, sowie die Sensitivität bezüglich Parameter und Anfangsbedingunen.

Den immer wiederkehrenden Verhaltensmustern komplexer Systeme liegen bestimmte Strukturen zugrunde, die als vereinfachte Modelle dargestellt werden können, sogenannte Systemarchetypen. Momentan werden 10 verschiedene solcher Systemarchetypen unterschieden.

SD war die grundlegende Methodik zur Simulation des Weltmodells World3, das für die Studien zu Limits to Growth (dt.: Die Grenzen des Wachstums, 1972) unter Leitung von Dennis L. Meadows im Auftrag des Club of Rome erstellt wurde.

SD und Physik

Zu Beginn der neunziger Jahren haben Studierende der Maschinenbauabteilung des damaligen Technikums Winterthur (TWI) erste Systeme mit dem STELLA modelliert. Das didaktische Potenzial der Synthese von Karlsruher Physikkurs und systemdynamischer Modellierung ist rasch erkannt und in mehreren Schritten in ein tragfähiges Curriculum umgesetzt worden. In der Zwischenzeit wird an einigen pädagogischen Hochschulen und mehreren Berufsmittelschulen die Physik der dynamischen Systeme unterrichtet. Die Akzeptanz unter den Studierenden und Schülern ist sehr hoch, falls die Lehrkraft über eine solide theoretisches Basis verfügt und mit der systemdynamischen Modellierungsmethode (System Thinking) vertraut ist.

Die Systemdynamik erlaubt nicht nur die effiziente Modellierung von komplexen, dynamischen Sytemen, sie erhellt geradezu die Struktur der Physik. Wer diese Struktur durchschaut und den Transfer einzelner Basisgesetze von einem Gebiet ins andere geschafft hat, kann kreativ mit den Grundgesetzen der Natur umgehen. Die nachfolgende Erklärung beschränkt sich auf das Skelett der Physik der dynamischen Systeme. Wer Fleisch sehen will, führe sich ein paar Modelle zu Gemüte.

Bilanzen

Mengenbilanz bezüglich zwei Systemen

Die klassische Physik kennt neben der Energie sieben weitere mengenartige oder bilanzierfähige Grössen: Masse, Volumen, Impuls, Drehimpuls, elektrische Ladung, Entropie und Stoffmenge. Masse, Impuls, Drehimpuls sowie elektrische Ladung bleiben bei allen Prozessen erhalten. Entropie kann erzeugt, aber nicht vernichtet werden.

Die Bilanzgleichung bezüglich eines Systems, die besagt, dass die Summe über alle Stromstärken zusammen mit der Quellenstärke und der Produktionsrate gleich der Änderungsrate des Inhaltes ist, kann nun in einfacher Weise in ein Systemdiagramm übertragen werden. Die Töpfe (Stocks) entsprechen den Systemen und die Leitungen (Flows) den Strömen, Quellen oder Produktionsraten.

konstitutive Gesetze

Kapazitives, resistives und induktives Gesetz

Die konstitutiven Gesetze ordnen der gespeicherten Menge ein Potenzial zu (kapazitives Gesetz), stellen einen Zusammenhang zwischen Stromstärke und Potenzialdifferenz (resistives Gesetz) oder zwischen Änderungsrate der Stromstärke und Potenzialdifferenz (induktives Gesetz) her.

Das Bild zeigt die allgemeine Struktur der drei Gesetze. Falls die Grösse Kapazität selber noch vom Potenzial abhängt oder der Widerstand eine Funktion der Stromstärke ist, sind die zugehörigen Gesetze zu kausalisieren und das Systemdiagramm ist entsprechend anzupassen. Die Induktivität nimmt im Systemdiagramm eine etwas eigenartige Form an, weil die Stromstärke zuerst die Gestalt eines Topfes (Stock) und erst danach die eines Stromes (Flow) annimmt.

Rolle der Energie

Zugeordnete Energieströme und Prozessleistung

Die Physik der dynamischen Systeme weist der Energie eine klar definierte Rolle zu: Energie wird nur zusammen mit mindestens einer zweiten mengenartigen Grösse, dem Energieträger, zwischen zwei Systemen ausgetauscht. Die bezüglich einer Referenzfläche pro Zeit transportierte Energie nennt man den zugeordneten Energiestrom. Die Stärke des zugeordneten Energiestromes ist gleich Trägerstromstärke mal zugehöriges Potenzial. Durchfliesst der Trägerstrom eine Potenzialdifferenz wird eine Prozessleistung (Stromstärke mal Potenzialdifferenz) umgesetzt.

Die systemdynamische Darstellung der grundlegenden physikalsichen Prozesse mit Bilanz, konstitutiven Gesetzen und Rolle der Energie besitzt eine unwahrscheinliche Stringenz. Wer das Sytemdiagramm betrachtet und eine gewisses Fertigkeit in Physik und im Systemdenken besetzt, weiss nach einem kurzen Blick auf das Systemdiagramm, welches Modell sie oder er vor sich hat.

Weblinks