Widerstand und Prozessleistung: Unterschied zwischen den Versionen
Admin (Diskussion | Beiträge) |
Admin (Diskussion | Beiträge) |
||
Zeile 50: | Zeile 50: | ||
Wie beim Zihlkanal, der Verbindung zwischen Neuenburger- und Bielersee, muss in jedem [[Zweig]] ein [[Bezugspfeil]] (rot) eingeführt werden, der die positive Stromrichtung anzeigt. Fliesst ein Strom gegen den Bezugspfeil, nimmt dessen Stärke einen negativen Wert an. Die Spannung wird ebenfalls mit einem Pfeil (blau) markiert. Der Spannungsffeil zeigt vom hohen zum tiefen Potential. Nimmt z.B. die Spannung einen positiven Wert an, liegt das höhere Potential an der Basis und das tiefere an der Spitze des Pfeils. Auf die [[Hydrodynamik]] übertragen zeigt der Druckpfeil vom hohen zum tiefen Druck. Versuchen Sie, diese Analogie voll zu verinnerlichen. |
Wie beim Zihlkanal, der Verbindung zwischen Neuenburger- und Bielersee, muss in jedem [[Zweig]] ein [[Bezugspfeil]] (rot) eingeführt werden, der die positive Stromrichtung anzeigt. Fliesst ein Strom gegen den Bezugspfeil, nimmt dessen Stärke einen negativen Wert an. Die Spannung wird ebenfalls mit einem Pfeil (blau) markiert. Der Spannungsffeil zeigt vom hohen zum tiefen Potential. Nimmt z.B. die Spannung einen positiven Wert an, liegt das höhere Potential an der Basis und das tiefere an der Spitze des Pfeils. Auf die [[Hydrodynamik]] übertragen zeigt der Druckpfeil vom hohen zum tiefen Druck. Versuchen Sie, diese Analogie voll zu verinnerlichen. |
||
Geht man zu einem bestimmten Zeitpunkt in Gedanken von einem Knoten längs einer [[Masche]] im Kreis herum, ist die Summe über alle Potentialdifferenzen (Spannungen) gleich Null. Auch diese Aussage ist vom hydraulischen Stromkreis her gut zu verstehen: in einem Rohrleitungssystem ist längs eines geschlossenen Pfades die Summe über alle Druckdifferenzen zu jedem Zeitpunkt gleich Null. |
Geht man zu einem bestimmten Zeitpunkt in Gedanken von einem Knoten längs einer [[Maschensatz|Masche]] im Kreis herum, ist die Summe über alle Potentialdifferenzen (Spannungen) gleich Null. Auch diese Aussage ist vom hydraulischen Stromkreis her gut zu verstehen: in einem Rohrleitungssystem ist längs eines geschlossenen Pfades die Summe über alle Druckdifferenzen zu jedem Zeitpunkt gleich Null. |
||
Die Ladungsbilanz bezüglich eines Knotens und das Verschwinden der Spannung längs eines vollen Umgangs werden in der [[Elektrodynamik]] als zwei Gesetze formuliert: |
Die Ladungsbilanz bezüglich eines Knotens und das Verschwinden der Spannung längs eines vollen Umgangs werden in der [[Elektrodynamik]] als zwei Gesetze formuliert: |
Version vom 21. September 2007, 03:46 Uhr
Elektrische Ladung kann praktisch nicht gespeichert werden. Bringt man zum Beispiel 50 nC (Nanocoulomb oder 50 nAs) elektrische Ladung auf eine Metallkugel von 20 cm Durchmesser, steigt deren Potential auf etwa 5000 V an. Deshalb erscheint die Ladungsbilanz in der Elektrodynamik meist nur in Form des Knotensatzes (Summe über alle Stromstärken bezüglich eines Verzweigungspunktes gleich Null). Als weitere Folge dieser extremen Wirkung der elektrischen Ladung muss man sich nicht um das Vorzeichen kümmern: wenn praktisch keine Ladung gespeichert werden kann, fliessen alle Ströme im Kreis herum. Strom und Spannung sind deshalb nur so zu orientieren, dass der Energieumsatz richtig beschrieben wird.
Diese vereinfachte Betrachtungsweise erlaubt eine Analogie zur Hydrodynamik. Alles was Sie dort gelernt haben, kann direkt auf die elektrischen Netzwerklehre übertragen werden. Und das wollen wir jetzt über drei Vorlesungen hinweg tun.
Lernziele
Hydroelektrische Analogie
Die hydroelektrische Analogie baut auf die Anschaulichkeit der Hydrodynamik, denn Volumen und Druck sind einfacher zu verstehen als Ladung und Potential. Trotz der guten Übereinstimmung zwischen dem Wasser- und dem elektrischen Stromkreis sollten Sie nicht vergessen, dass der elektrische Strom in Drähten nichts mit Bewegung zu tun hat.
Analoge Grössen:
hydraulisch | Zeichen | Einheit | elektrisch | Zeichen | Einheit |
---|---|---|---|---|---|
Volumen | V | Kubikmeter (m3) | elektrische Ladung | Q | Coulomb (C) |
Volumenstrom | IV | m3/s | elektrischer Strom | I | Ampère (A) |
Druck | p | Pascal (Pa) | elektrisches Potential | φ | Volt (V = J/C) |
Druckdifferenz | Δ p | Pascal (Pa) | Spannung | U | Volt (V = J/C) |
Ein elektrischer Strom ist wie der Volumenstrom ein Energieträger, der durch Netzwerke im Kreis herum fliesst. In den einzelnen Knoten werden Ströme zusammengeführt und wieder auf verschieden Zweige verteilt.
Wie beim Zihlkanal, der Verbindung zwischen Neuenburger- und Bielersee, muss in jedem Zweig ein Bezugspfeil (rot) eingeführt werden, der die positive Stromrichtung anzeigt. Fliesst ein Strom gegen den Bezugspfeil, nimmt dessen Stärke einen negativen Wert an. Die Spannung wird ebenfalls mit einem Pfeil (blau) markiert. Der Spannungsffeil zeigt vom hohen zum tiefen Potential. Nimmt z.B. die Spannung einen positiven Wert an, liegt das höhere Potential an der Basis und das tiefere an der Spitze des Pfeils. Auf die Hydrodynamik übertragen zeigt der Druckpfeil vom hohen zum tiefen Druck. Versuchen Sie, diese Analogie voll zu verinnerlichen.
Geht man zu einem bestimmten Zeitpunkt in Gedanken von einem Knoten längs einer Masche im Kreis herum, ist die Summe über alle Potentialdifferenzen (Spannungen) gleich Null. Auch diese Aussage ist vom hydraulischen Stromkreis her gut zu verstehen: in einem Rohrleitungssystem ist längs eines geschlossenen Pfades die Summe über alle Druckdifferenzen zu jedem Zeitpunkt gleich Null.
Die Ladungsbilanz bezüglich eines Knotens und das Verschwinden der Spannung längs eines vollen Umgangs werden in der Elektrodynamik als zwei Gesetze formuliert:
- Knotensatz:
- [math]\sum_i I_i=0[/math]
- Maschensatz:
- [math]\sum_i U_i=0[/math]