Lösung zu Prozessleistung Gravitation: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
#Eine Fallhöhe von 110 m ergibt eine Differenz des Gravitationspotenzials (Gravitationsspannung) von etwa 1.1 kJ/kg. Ein Massenstrom von 10 Millionen Kilogramm pro Sekunde, der über diese Potenzialdifferenz fällt, setzt eine Leistung von 11 GW frei.
#Eine Fallhöhe von 110 m ergibt eine Differenz des Gravitationspotenzials (Gravitationsspannung) von 9.81 m/s<sup>2</sup> * 110 m = 1.08 kJ/kg. Ein Massenstrom von 10 Millionen Kilogramm pro Sekunde, der über diese Potenzialdifferenz fällt, setzt eine Leistung von 1.08 kJ/kg * 10<sup>7</sup> kg/s = 10.8 GW frei.
#P = 1884m * 10 N/kg * 75'000 kg/s = 1.4 GW
#P = 1884m * 10 N/kg * 75'000 kg/s = 1.4 GW
#Der Wasserspiegel wird am Schluss in beiden Gefässen 34.2 cm über den Gefässboden liegen (totales Volumen dividiert durch gesamten Querschnitt). Im Ausgleichsprozess werden 4 J Energie dissipiert, da insgesamt 2.33 kg Wasser im Mittel um 0.175 m hinunter fliessen.
#Der Wasserspiegel wird am Schluss in beiden Gefässen 34.2 cm über den Gefässboden liegen (totales Volumen dividiert durch gesamten Querschnitt). Im Ausgleichsprozess werden 4 J Energie dissipiert, da insgesamt 2.33 kg Wasser im Mittel um 0.175 m hinunter fliessen.

Version vom 10. Juli 2009, 12:39 Uhr

  1. Eine Fallhöhe von 110 m ergibt eine Differenz des Gravitationspotenzials (Gravitationsspannung) von 9.81 m/s2 * 110 m = 1.08 kJ/kg. Ein Massenstrom von 10 Millionen Kilogramm pro Sekunde, der über diese Potenzialdifferenz fällt, setzt eine Leistung von 1.08 kJ/kg * 107 kg/s = 10.8 GW frei.
  2. P = 1884m * 10 N/kg * 75'000 kg/s = 1.4 GW
  3. Der Wasserspiegel wird am Schluss in beiden Gefässen 34.2 cm über den Gefässboden liegen (totales Volumen dividiert durch gesamten Querschnitt). Im Ausgleichsprozess werden 4 J Energie dissipiert, da insgesamt 2.33 kg Wasser im Mittel um 0.175 m hinunter fliessen.
  4. Die Fallhöhe muss mindestens 18.4 m betragen: [math]\Delta h = \Delta \phi_G / g = (P_{grav} / I_V)/ g[/math].

Die Gravitationsfeldstärke ist in allen Berechnungen gleich 10 N/kg gesetzt worden.

Aufgabe