Lösung zu Bowling: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
 
Keine Bearbeitungszusammenfassung
Zeile 3: Zeile 3:
#Der in der Kugel von der Berührfläche zur Mitte quer fliessender Impuls erzeugt eine Drehimpulssenke der Stärke ''Reibkraft mal Radius'' ([[Hebelgesetz]]).
#Der in der Kugel von der Berührfläche zur Mitte quer fliessender Impuls erzeugt eine Drehimpulssenke der Stärke ''Reibkraft mal Radius'' ([[Hebelgesetz]]).
#In der Rollphase muss die Umfangsgeschwindigkeit der Kugel bezüglich ihrer Mitte gleich der Geschwindigkeit dieser Mitte sein.
#In der Rollphase muss die Umfangsgeschwindigkeit der Kugel bezüglich ihrer Mitte gleich der Geschwindigkeit dieser Mitte sein.
#Die Änderungsraten von Drehimpuls und Impuls sind über das Hebelgesetz fest verkuppelt. Folglich ist auch die Änderung des Drehimpulses fest mit der Änderung des Impulses verknüpft <math>r = \frac {F_R r}{F_R} = \frac {\left|\Delta L\right|}{\Delta p} = \frac {J(\omega - \omega_e)}{m(v_e - v)}= \frac {J(\omega - v_e/r)}{m(v_e - v)}</math>. Löst man diese Gleichung nach der Endgeschwindigkeit auf, erhält man <math>v_e = \frac {rmv + J\omega}{rm + J/r}</math> = 4.15 m/s. Die Kugel dreht sich dann mit einer Winkelgeschwindigkeit von 46 s<sup>-1</sup>.
#Die Änderungsraten von [[Drehimpuls]] und [[Impuls]] sind über das Hebelgesetz fest verkuppelt. Folglich ist auch die Änderung des Drehimpulses fest mit der Änderung des Impulses verknüpft <math>r = \frac {F_R r}{F_R} = \frac {\left|\Delta L\right|}{\Delta p} = \frac {J(\omega - \omega_e)}{m(v_e - v)}= \frac {J(\omega - v_e/r)}{m(v_e - v)}</math>. Löst man diese Gleichung nach der Endgeschwindigkeit auf, erhält man <math>v_e = \frac {rmv + J\omega}{rm + J/r}</math> = 4.07 m/s. Die Kugel dreht sich dann mit einer Winkelgeschwindigkeit von 45 s<sup>-1</sup>.
#Impuls wird von der Erde in die Kugel gepumpt, Drehimpuls fliesst weg. Die dabei umgesetzte Energie ist gleich Menge mal mittlere Pump- bzw. Fallhöhe <math>W_{diss} = \Delta p \overline v - \Delta L \overline \omega</math>. Während der Rutschphase werden 4.3 Ns Impuls im Mittel um 3.5 m/s hinauf gepumpt. Die dazu notwendige Energie stammt vom Drehimpuls (0.39 Nms), der im Mittel um 60 s<sup>-1</sup> hinunterfällt. Die Impuls-Pumparbeit beträgt 15.2 J, der wegströmende Drehimpuls setzt 23.2 J Energie frei, folglich werden 8 J Energie zwischen Kugel und Bahn dissipiert.

Mehr zu diesem Thema unter [[Kegeln]].

'''[[Bowling]]'''

Version vom 28. April 2007, 05:37 Uhr

Flüssigkeitsbild

Die Umfangsgeschwindigkeit der Bowlingkugel bezüglich ihrer Mitte beträgt [math]v_U = \omega r[/math] = 6.75 m/s. Die Kugel dreht sich somit schneller, als wenn sie nur abrollen würde. Folglich wirkt die Gleitreibungskraft in Bewegungsrichtung.

  1. Die Gleitreibung führt der Kugel Impuls zu. Dieser Impuls fliesst in der Kugel quer zu seiner Bezugsrichtung. Längs des quer fliessenden Impulses bildet sich eine Drehimpulssenke.
  2. Der in der Kugel von der Berührfläche zur Mitte quer fliessender Impuls erzeugt eine Drehimpulssenke der Stärke Reibkraft mal Radius (Hebelgesetz).
  3. In der Rollphase muss die Umfangsgeschwindigkeit der Kugel bezüglich ihrer Mitte gleich der Geschwindigkeit dieser Mitte sein.
  4. Die Änderungsraten von Drehimpuls und Impuls sind über das Hebelgesetz fest verkuppelt. Folglich ist auch die Änderung des Drehimpulses fest mit der Änderung des Impulses verknüpft [math]r = \frac {F_R r}{F_R} = \frac {\left|\Delta L\right|}{\Delta p} = \frac {J(\omega - \omega_e)}{m(v_e - v)}= \frac {J(\omega - v_e/r)}{m(v_e - v)}[/math]. Löst man diese Gleichung nach der Endgeschwindigkeit auf, erhält man [math]v_e = \frac {rmv + J\omega}{rm + J/r}[/math] = 4.07 m/s. Die Kugel dreht sich dann mit einer Winkelgeschwindigkeit von 45 s-1.
  5. Impuls wird von der Erde in die Kugel gepumpt, Drehimpuls fliesst weg. Die dabei umgesetzte Energie ist gleich Menge mal mittlere Pump- bzw. Fallhöhe [math]W_{diss} = \Delta p \overline v - \Delta L \overline \omega[/math]. Während der Rutschphase werden 4.3 Ns Impuls im Mittel um 3.5 m/s hinauf gepumpt. Die dazu notwendige Energie stammt vom Drehimpuls (0.39 Nms), der im Mittel um 60 s-1 hinunterfällt. Die Impuls-Pumparbeit beträgt 15.2 J, der wegströmende Drehimpuls setzt 23.2 J Energie frei, folglich werden 8 J Energie zwischen Kugel und Bahn dissipiert.

Mehr zu diesem Thema unter Kegeln.

Bowling