Lösung zu Federbelasteter Hydrospeicher: Unterschied zwischen den Versionen
Inhalt hinzugefügt Inhalt gelöscht
User (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
Admin (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
#<math>C_V = \frac {\Delta V}{\Delta p} = \frac {A h}{(\rho g + k)h} = \frac {A}{(\rho g + k)}</math> = 7.73 10<sup>-6</sup> m<sup>3</sup> / Pa |
#<math>C_V = \frac {\Delta V}{\Delta p} = \frac {A h}{(\rho g + k)h} = \frac {A}{(\rho g + k)}</math> = 7.73 10<sup>-6</sup> m<sup>3</sup> / Pa |
||
#Der Federspeicher wird bei 1000 Litern zwei Meter hoch mit Flüssigkeit gefüllt. Die zugeführte Energie ist gleich dem mittleren Überdruck mal das zugeführte Volumen, also gleich 6.47 10<sup>4</sup> Pa * 1 m<sup>3</sup> = 64.7 |
#Der Federspeicher wird bei 1000 Litern zwei Meter hoch mit Flüssigkeit gefüllt. Die zugeführte Energie ist gleich dem mittleren Überdruck mal das zugeführte Volumen, also gleich 6.47 10<sup>4</sup> Pa * 1 m<sup>3</sup> = 64.7 kJ. |
||
#Bezieht man die Energie auf die Umgebung - nimmt man für den [[zugeordneter Energiestrom|zugeordneten Energiestrom]] den Überdruck - wächst der Energieinhalt des Speichers quadratisch mit dem Füllzustand <math>W = \frac {(\Delta V)^2}{2C}</math>. Löst man diese Gleichung nach dem zugeführten Volumen auf, erhält man <math>\Delta V = \sqrt {2CW}</math>. |
#Bezieht man die Energie auf die Umgebung - nimmt man für den [[zugeordneter Energiestrom|zugeordneten Energiestrom]] den Überdruck - wächst der Energieinhalt des Speichers quadratisch mit dem Füllzustand <math>W = \frac {(\Delta V)^2}{2C}</math>. Löst man diese Gleichung nach dem zugeführten Volumen auf, erhält man <math>\Delta V = \sqrt {2CW}</math>. |
||
Version vom 15. Oktober 2007, 07:38 Uhr
- [math]C_V = \frac {\Delta V}{\Delta p} = \frac {A h}{(\rho g + k)h} = \frac {A}{(\rho g + k)}[/math] = 7.73 10-6 m3 / Pa
- Der Federspeicher wird bei 1000 Litern zwei Meter hoch mit Flüssigkeit gefüllt. Die zugeführte Energie ist gleich dem mittleren Überdruck mal das zugeführte Volumen, also gleich 6.47 104 Pa * 1 m3 = 64.7 kJ.
- Bezieht man die Energie auf die Umgebung - nimmt man für den zugeordneten Energiestrom den Überdruck - wächst der Energieinhalt des Speichers quadratisch mit dem Füllzustand [math]W = \frac {(\Delta V)^2}{2C}[/math]. Löst man diese Gleichung nach dem zugeführten Volumen auf, erhält man [math]\Delta V = \sqrt {2CW}[/math].