Lösung zu Gleitflug: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
Im antriebslosen Zustand wirken nur das [[Gravitationsfeld]] und die umgebende Luft auf das Flugzeug ein. Die [[Kraft]] der Luft lässt sich bezüglich der Anströmung in einen [[dynamischer Auftrieb|dynamischen Auftrieb]] und einen [[Luftwiderstand]] zerlegen.
Im antriebslosen Zustand wirken nur das [[Gravitationsfeld]] und die umgebende Luft auf das Flugzeug ein. Die [[Kraft]] der Luft lässt sich bezüglich der Anströmung in einen [[dynamischer Auftrieb|dynamischen Auftrieb]] und einen [[Luftwiderstand]] zerlegen.
#Die Kraft der Luft ist gleich der Gewichtskraft, also 1295 kN.
#In der ersten Phase geht man von einer gleichförmigen Bewegungs aus, also ist die Vektorsumme der 3 Kräfte 0. Die Kraft der Luft (Vektorsumme von Auftrieb und Widerstand) ist dann entgegengesetzt gleich der Gewichtskraft, ihr Betrag also 1295 kN.
#Auftrieb und Luftwiderstand stehen im Verhältnis der [[Gleitzahl]] zueinander. Folglich ist der Auftrieb gleich Gewichtskraft mal Cosinus des Gleitwinkels (4.69°), also gleich 1291 kN und der Luftwiderstand ist gleich Gewichtskraft mal Sinus des Gleitwinkels, also gleich 106 kN.
#Auftrieb und Luftwiderstand stehen im Verhältnis der [[Gleitzahl]] zueinander. Folglich ist der Auftrieb gleich Gewichtskraft mal Cosinus des Gleitwinkels (4.69°), also gleich 1291 kN und der Luftwiderstand ist gleich Gewichtskraft mal Sinus des Gleitwinkels, also gleich 106 kN.
#Die dissipierte Leistung ist gleich Luftwiderstand mal Geschwindigkeit. Da die Geschwindigkeit 124 m/s (446 km/h) betrug, ist eine Leistung von 13.13 MW dissipiert worden.
#Die dissipierte Leistung ist gleich Luftwiderstand mal Geschwindigkeit. Da die Geschwindigkeit 124 m/s (446 km/h) betrug, ist eine Leistung von 13.13 MW dissipiert worden.
#Die dissipierte Energie entstammt dem [[Gravitationsfeld]]. Deshalb kann die zugehörige Leistung auch mit Hilfe der Gewichtskraft (1295 kN) und der Sinkgeschwindigkeit (10.16 m/s) berechnet werden. Die Leistung der Gewichtskraft ''P(F<sub>G</sub>)'' = 10.16 m/s * 1295 kN = 13.16 MW und die Leistung des Luftwiderstandes ''P(F<sub>W</sub>)'' = 124 m/s * 106 kN sind beim Gleitflug betragsmässig gleich gross.
#Die dissipierte Energie entstammt dem [[Gravitationsfeld]] (die potentielle Energie des Flugzeugs nimmt ab). Deshalb kann die zugehörige Leistung auch mit Hilfe der Gewichtskraft (1295 kN) und der Sinkgeschwindigkeit (10.16 m/s) berechnet werden. Die Leistung der Gewichtskraft ''P(F<sub>G</sub>)'' = 10.16 m/s * 1295 kN = 13.16 MW und die Leistung des Luftwiderstandes ''P(F<sub>W</sub>)'' = 124 m/s * 106 kN sind beim Gleitflug betragsmässig gleich gross.


'''[[Gleitflug|Aufgabe]]'''
'''[[Gleitflug|Aufgabe]]'''

Version vom 20. Dezember 2007, 16:23 Uhr

Im antriebslosen Zustand wirken nur das Gravitationsfeld und die umgebende Luft auf das Flugzeug ein. Die Kraft der Luft lässt sich bezüglich der Anströmung in einen dynamischen Auftrieb und einen Luftwiderstand zerlegen.

  1. In der ersten Phase geht man von einer gleichförmigen Bewegungs aus, also ist die Vektorsumme der 3 Kräfte 0. Die Kraft der Luft (Vektorsumme von Auftrieb und Widerstand) ist dann entgegengesetzt gleich der Gewichtskraft, ihr Betrag also 1295 kN.
  2. Auftrieb und Luftwiderstand stehen im Verhältnis der Gleitzahl zueinander. Folglich ist der Auftrieb gleich Gewichtskraft mal Cosinus des Gleitwinkels (4.69°), also gleich 1291 kN und der Luftwiderstand ist gleich Gewichtskraft mal Sinus des Gleitwinkels, also gleich 106 kN.
  3. Die dissipierte Leistung ist gleich Luftwiderstand mal Geschwindigkeit. Da die Geschwindigkeit 124 m/s (446 km/h) betrug, ist eine Leistung von 13.13 MW dissipiert worden.
  4. Die dissipierte Energie entstammt dem Gravitationsfeld (die potentielle Energie des Flugzeugs nimmt ab). Deshalb kann die zugehörige Leistung auch mit Hilfe der Gewichtskraft (1295 kN) und der Sinkgeschwindigkeit (10.16 m/s) berechnet werden. Die Leistung der Gewichtskraft P(FG) = 10.16 m/s * 1295 kN = 13.16 MW und die Leistung des Luftwiderstandes P(FW) = 124 m/s * 106 kN sind beim Gleitflug betragsmässig gleich gross.

Aufgabe