Lösung zu Serieschaltung von Kondensatoren
- Jene Teile der Kondensatoren, die direkt miteinander verbunden sind, sind immer genau entgegengesetzt gleich stark geladen, weil die Ladung nirgendswo anders hinfliessen kann. Ausserdem nimmt ein Kondensator beim Laden auf einem Teil immer gleich viel Ladung auf wie er auf dem anderen abgibt. Aus beidem folgt, dass die Ladung bei beiden Kondensatoren zu jedem Zeitpunkt gleich gross ist: C1 * U1 = C2 * U2, U1 + U2 = Utot. Folglich teilen die beiden Kondensatoren die angelegte Spannung im umgekehrten Verhältnis zu ihren Kapazitäten; der grössere Kondensator wird auf 50 V * [4 μF / (16 μF + 4 μF)] = 10 V aufgeladen und der kleinere auf 40 V.
- Die Kondensatorenladung beträgt 16 μF * 10 V = 0.16 mC. Das Produkt aus Kapazität und Spannung muss für beide Kondensatoren gleich gross sein.
- Wir denken uns nun den Punkt zwischen den beiden Kapazitäten geerdet. So lässt sich der Vorgang gut im Flüssigkeitsbild darstellen. Der andere Teil des grossen Kondensators hat ein Potenzial von 10 V und bildet im Flüssigkeitsbild einen Topf mit positiver Füllhöhe. Der nicht geerdete Teil des kleineren Kondensators wird im Flüssigkeitsbild zu einem Topf mit negativer Füllhöhe. Weil die Ladung bei beiden Kondensatoren gleich gross ist, werden diese über dem Widerstand vollständig entladen. Eine vollständige Entladung tritt in der Regel nicht ein, wenn beide Kondensatoren einzeln auf eine individuelle Spannung aufgeladen und dann über einen Widerstand miteinander verbunden werden.
- Über dem Widerstand wird die ganze Energie von beiden Kondensatoren dissipiert: [math]W = \frac {1}{2}QU = 0.5*0.16 mC*50V = 4 mJ[/math]. Im Flüssigkeitsbild fallen 0.16 mC Ladung im Mittel um 25 V (50 V/2) hinunter.
- Beide Kondensatoren speichern 0.16 mC Ladung bei 50 V Spannung. Folglich beträgt die Gesamtkapazität 3.2 μF. Diese Kapaziät ergibt sich auch aus der Formel zur Berechnung der Ersatzkapazität bei Serieschaltung von Kondensatoren. Mit dieser Ersatzkapazität und dem gegebenem Widerstand von 20 kΩ erhält man eine Zeitkonstante von 64 ms.