Carnotor und ideales Gas

Aus SystemPhysik

Das ideale Gas liefert ein einfachstes Modell, um thermodynamischen Prozesse, wie sie in Wärmepumpen und Wärmekraftmaschinen (Dampfmaschinen, Verbrennungsmotoren und Gasturbinen) ablaufen, zu verstehen. Zur Beschreibung homogener, thermodynamischer Systeme benötigt man mindestens zwei Bilanzgleichungen, die Entropiebilanz und die Volumenbilanz. Folglich müssen aus den Bilanzgleichungen auch zwei Potenziale berechnet werden. Solche Doppelspeicher sind entsprechend komplexer zu beschreiben als etwa ein Hydrospeicher (Druck berechnet sich aus dem Volumen), ein bewegter Körper (Geschwindigkeit folgt aus dem Impulsinhalt) oder ein Kondensator (Spannung hängt direkt mit der Ladung zusammen). Erschwerend kommt hinzu, dass in der Thermodynamik viele Grössen auf die Energie bezogen angegeben werden. Damit sie in einem dynamischen Modell eingesetzt werden können, müssen sie dann zuerst auf die Entropie umgerechnet werden.

Lernziele

Carnotor

Der Carnotor, der schon in der letzten Vorlesung eingeführt worden ist, dient dem Verständnis der thermodynamischen Basisprozesse. Nachfolgend wird der Bau eines systemdynamischen Modells des Carnotors Schritt für Schritt erklärt.

Die Impulsbilanz und die Volumenbilanz bilden das Rückgrat des Carnotors. Aus der Volumenbilanz ist dann unter Beizug des gesamten, zur Verfügung stehenden Volumens Vtot das dem zu modellierenden Stoff zur Verfügung stehende Volumen zu berechnen.

[math]V=V_{tot}-V_{hyd}[/math]

Nun hängt die Temperatur nicht ausschliesslich vom Entropieinhalt ab. Die Temperatur ist eine Funktion des Entropie und des Volumens. Dies kann mit einem einfachen Experiment gezeigt werden. Presst man Luft schnell zusammen und lässt sie kurz danach wieder expandieren, steigt die Temperatur an und sinkt danach wieder ungefähr auf den ursprünglichen Wert ab. Da in erster Näherung die Entropieproduktion und die Wärmeleitung vernachlässigt werden kann, bleibt die Entropie konstant. Folglich steigt die Temperatur mit abnehmendem Volumen bei konstant gehaltener Entropie.

Wie die Temperatur ist der Druck eine Funktion des Volumens und der Entropie. Heizt man ein Gas bei konstantem Volumen auf, steigt neben der Temperatur auch der Druck an. Das Basismodell des Carnotors besteht folglich aus einer Volumen- und einer Entropiebilanz. Druck und Temperatur lassen sich dann aus dem aktuellen Volumen und dem momentanen Entropieinhalt berechnen. Die zugehörigen Beziehungen nennt man konstitutive Gesetze. Die konstitutiven Gesetze des idealen Gases werden weiter unten eingeführt.

vier Basisprozess

Von den vier Basisprozessen sind das isochore Heizen oder Kühlen (Volumen konstant) sowie das isentrope Komprimieren oder Expandieren (Entropie konstant) einfach zu modellieren. Auf der einen Seite wird Entropie bzw. Volumen zu- oder abgeführt. Der andere Strom ist dann auf Null zu setzen. Etwas schwieriger gestaltet sich das isobare Heizen oder Kühlen (Druck konstant) sowie das isotherme Komprimieren oder Expandieren (Temperatur konstant). Auf der einen Seite wird wieder ein Entropie- bzw. Volumenstrom vorgegeben (aufgeprägt). In der andern Zuleitung ist der Strom so freizugeben, dass der Druck bzw. die Temperatur des Systems auf einem konstanten Wert bleibt. Modellmässig und auch in Wirklichkeit ist eine totale Freigabe eines Stromes nicht möglich. Um eine möglichst gute Druck- oder Temperaturstabilität zu erreichen, führen wir einen möglichst grossen Volumen- oder Entropieleitwert. Zudem nehmen wir an, dass der Carnotor über den Volumenleitwert GV an ein riesiges hydraulisches System mit dem Druck p0 bzw. über den Entropieleitwert GS an ein Wärmebad der Temperatur T0 angekoppelt sei. Die Gleichungen für die beiden Zuleitungen lauten dann

[math]I_S=G_S(T_0-T)[/math] und [math]I_V=G_V(p_0-p)[/math]

Energieebene

ideales Gas

Modell

thermische Zusstandsgleichung

kalorische Zustandsgleichung

Entropie

konstitutive Gesetze

mikroskopisches Verständnis

Kontrollfragen

Materialien

[Physik und Systemwissenschaft in Aviatik|Zurück zum Inhalt]]