Lösung zu Zwei Klötze mit Feder
- Wenn man die Feder an einem Ende festhält, steigt die "Federkraft" (die Stärke des durch die Feder fliessenden Impulsstromes) linear mit der Verformung an (Federgesetz). Der Proportionalitätsfaktor ist die Richtgrösse D. Drückt man die hier gegebene Feder um 20 cm zusammen, steigt der Impulsdurchfluss also auf 420 N an.
- Die von der Feder gespeicherte Energie ist gleich der Verformungsarbeit, als gleich der Fläche unter der Kraft-Verformungskurve
- [math]W = \frac {F}{2} \Delta x = \frac {1}{2}D (\Delta x)^2 = 42 J[/math]
- Nimmt man an, dass die gesamte Federenergie verlustfrei vom Impulsstrom aufgenommen wird, gilt die folgende Energiebilanz zu zwei Zeitpunkten (links vorher, rechts nachher)
- [math]42 J = \frac {1}{2} m_1 (v_1)^2 + \frac {1}{2} m_2 (v_2)^2 = \frac {p_1^2}{2 m_1} + \frac {p_2^2}{2 m_2}[/math]
- Da der totale Impuls immer gleich Null sein muss, gilt
- [math]p_1 + p_2 = m_1 v_1 + m_2 v_2 =0[/math]
- [math]42 J = \frac {m_1}{2} (1 + \frac {m_1}{m_2})(v_1)^2[/math]
- Der schwerer Klotz gleitet nach dem Entspannen der Feder mit 1.48 m/s nach rechts und der leichtere mit -2.58 m/s nach links.