Venturirohr

Aus SystemPhysik
Version vom 26. Februar 2007, 12:44 Uhr von Admin (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der Venturi-Effekt wurde von Giovanni Battista Venturi entdeckt und von Daniel Bernoulli mathematisch beschrieben.

Das Venturirohr dient der Messung von Volumenstromstärken bei Flüssigkeiten und Gasen. Als Messanordnung dient ein glattwandiges Rohr mit einer Verengung. Bei dieser Verengung muss das als inkompressibel angesehene Fluid seine Geschwindigkeit erhöhen, damit die Volumenstromstärke längs der Strömung erhalten bleibt. Weil dabei die Dichte der kinetischen Energie anwächst, fällt der Druck, das Energiebeladungsmass des Volumenstromes zusammen. Bildlich gesprochen wird bis zur engsten Stelle Druckenergie in kinetische Energie umgeladen. Aus dem Druckabfall und dem Querschnittverhältnis kann bei bekannter Dichte des Fluids der Volumenstrom im Venturirohr berechnet werden.

Bei idealen Gasen und Flüssigkeiten (inkompressibel und ohne Reibung) ist der Druck mit der Dichte der kinetischen und der potentiellen Energie über das Gesetzt von Bernoulli erknüpft

[math]\frac {\rho}{2} v_1^2 + \rho g h_1 + p_1 = \frac {\rho}{2} v_2^2 + \rho g h_2 + p_2[/math]

Ist das Venturi-Rohr waagrecht ausgerichtet, so fällt der Term für die Dichte der potentiellen Energie weg. Für die Druckdifferenz erhält man dann

[math]\Delta p = p_1 - p_2 = \frac {\rho}{2} (v_2^2 - v_1^2)[/math]

Ersetzt man die Geschwindigkeit über den zugehörigen Querschnitt durch die Volumenstromstärke

[math]v_i = \frac {I_V}{A_i}[/math] mit i = 1 oder 2

und löst die Gleichung nach der Volumenstromstärke auf, erhält man die gesuchte Bezieung

[math]I_V = \sqrt {\frac {2 (p_1 - p_2)} {\rho \left(A_2^{-2} - A_1^{-2}\right)}}[/math]

Die Stärke des Volumenstromes ist bei gegebenen Querschnitten und bekannter Dichte berechenbar, sobald die Druckdifferenz gemessen wird.