Lösung zu Eistee
Wir berechnen hier nur die Entropie, die durch den Temperaturausgleich produziert wird. Enthält der Tee noch Zucker, wird durch die Diffusion des Zuckers ins Eiswasser zusätzlich Entropie erzeugt.
Lösung 1
Die Enthalpie ändert sich um
- [math]\Delta H_{Eistee} = \Delta H_{E} + \Delta H_{T} = m_E (c_E(T_s - T_E) + q + c_{fl}(T_{ET} - T_s)) + m_T c_{fl} (T_{ET} - T_T)[/math] =
- 0.054 kg (2.1 kJ/kg/K * (273 K - 258 K) + 334 kJ/kg + 4.19 kJ/kg/K *(280 K - 273 K)) + 0.2 kg * 4.19 kJ/kg/K * (280 K - 303 K) = 21.32 kJ - 19.27 kJ =
- 2.05 kJ.
Diese Energie ist von der Umwelt in Form von Wärme zugeflossen.
Lösung 2
Die Entropie des Eistees hat um
- [math]\Delta S_{Eistee} = \Delta S_{E} + \Delta S_{T} = m_E (c_E\ln{\frac{T_s}{T_E}} + \frac {q}{T_s} + c_{fl}\ln{\frac{T_{ET}}{T_s}}) + m_T c_{fl}\ln{\frac{T_{ET}}{T_T}}[/math] =
- 0.054 kg * (2.1 kJ/kg/K * ln(273 K / 258 K) + 334 kJ/kg / 273 K + 4.19 kJ/kg/K * ln(280 K / 273 K)) +
- 0.2 kg * 4.19 kJ/kg/K * ln(280 K / 303 K) =
- 78.2 J/K - 66.2 J/K = 12.0 J/K
zugenommen.
Lösung 3
Die produzierte Entropie ist die Differenz zwischen der von der Umwelt zugeflossenen Entropie [math]S_U = W_U / T_U[/math] und der an die Eisteemischung abgegebenen Entropie [math]S_M = \Delta S_{Eistee}[/math], wobei [math]W_U = \Delta H[/math]: [math]S_{prod} = S_M - S_U = \Delta S_{Eistee} - \frac {\Delta H}{T_U} [/math] = 12 J/K - 7 J/K = 5 J/K.
Die Relevanz dieser Aufgabe sollte nicht überschätzt werden. Doch wieso darf sich in unserer Gesellschaft nur der Literat, der zufällig die Zusammensetzung des Lieblings-"Eistees" von Ernest Hemingway kennt (5 cl Rum, 1 cl Kirschlikör, 1 cl Grapefruitsaft und 2 cl Zitronensaft), erhaben fühlen? Sollte da der Ingenieur nicht auch Stolz darauf sein können, zu wissen, wie Energie und Entropie sauber zu bilanzieren sind?