Lösung zu Flugzeug auf Kreisbahn

Aus SystemPhysik
  1. Die Vertikalkomponente der Kraft von der Luft auf das Flugzeug kompensiert die Wirkung der Gewichtskraft. Der horizontale Anteil dieser Kraft verursacht die Normalbeschleunigung. Folglich gilt [math]\frac {F_{Luft_h}}{F_{Luft_v}} = \tan(40^\circ) = \frac {m a}{m g}[/math] also ist die Beschleunigung des Flugzeuges [math]a = g \tan(40^\circ)[/math]. Daraus kann mit Hilfe der Formel für die Beschleunigung bei gleichmässiger Kreisbewegung der Kreisradius berechnet werden [math]r = \frac {v^2}{a} = \frac {v^2}{g \tan(40^\circ)} [/math] = 2.16 km.
  2. Die Beschleunigung des Flugzeuges erzeugt im Innern ein zusätzliches Gravitationsfeld. Dieses Feld ist mit dem Gravitationsfeld der Erde zu überlagern (zu superponieren). Die im Flugzeug wahrnehmbare Gravitationsfeldstärke ist demnach gleich [math]g' = \sqrt{g^2 + g_t^2} = g \sqrt{1 + (\tan 40^\circ)^2} [/math] = 12.8 N/kg.

Aufgabe