Bohrsches Atommodell

Aus SystemPhysik
Version vom 6. Januar 2008, 08:30 Uhr von Admin (Diskussion | Beiträge) (Die Seite wurde neu angelegt: Das '''Bohrsche Atommodell''' wurde 1913 von ''Niels Bohr'' entwickelt und baut auf dem ''Rutherfordsches Atommodell'' (Elektronen umkreisen einen kleinen positiv gelad...)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Das Bohrsche Atommodell wurde 1913 von Niels Bohr entwickelt und baut auf dem Rutherfordsches Atommodell (Elektronen umkreisen einen kleinen positiv geladenen Atomkern) auf. Das Bohrsche Atommodell konnte wohl die Spektrallinien des Wasserstoffatoms erklären, erwies sich sonst aber als Sackgasse. Dass dieses Modell heute noch an Schulen gelehrt wird, ist ein deutliches Indiz für den Reformbedarf des Physikunterrichts.

Modell

Im Bohrschen Atommodell umkreist ein Elektron auf Kreisbahnen den Kern (Proton, Heliumkern). Da gemäss den Gesetzen der Elektrodynamik eine beschleunigte Ladung elektromagnetische Strahlung aussendet, müsste das Elektron in kürzester Zeit auf den Kern abstürzen. Bohr postulierte deshalb, dass das Elektron auf den zugelassenen (stabilen) Bahnen nicht strahlt und nur beim Übergang von einer Bahn auf die andere ein Lichtteilchen (Photon) aussenden oder absorbiert.

Bohrsche Postulate

Bohr formulierte sein Modell, indem er das Rutherfordsches Atommodell um drei Postulate erweiterte:

  1. Elektronen bewegen sich auf stabilen Kreisbahnen um den Atomkern ohne elektromagnetische Strahlung zu emittieren.
  2. Der Radius der Elektronenbahn ändert sich nicht kontinuierlich, sondern sprunghaft. Bei diesem Quantensprung wird ein Photon abgegeben oder aufgenommen.
  3. Elektronenbahnen sind stabil, falls der Bahndrehimpuls des Elektrons ein ganzzahliges Vielfaches des Plancksches Wirkungsquantum [math]\hbar[/math] ist. Dieses Postulat wird häufig auch Auswahlbedingung genannt.

Mathematische Formulierung

Im Bohrschen Atommodell wird das Elektron (Masse m, Ladung -e) durch die elektrostatische Kraft des Atomkerns auf einer Kreisbahn gehalten

[math] F_E=\frac{1}{4\pi\epsilon_0}\frac{e^2}{r^2}=ma_n={mv^2\over r }[/math]

Der Bahndrehimpuls des Elektrons [math] L = mvr [/math] muss nun nach dem dritten Postulat quantisiert werden

[math]L=mvr=n\hbar \Leftrightarrow\ v={n\hbar\over mr}[/math].

Setzt man die so gewonnene Beziehung zwischen Geschwindigkeit und Radius ins Grundgesetz der Mechanik (Impulsbilanz) ein, erhält man für den Radius r:

[math] {e^2 \over 4\pi\epsilon_0 r^2 }={m({n\hbar\over mr})^2\over r} \Leftrightarrow {e^2 \over 4 \pi \epsilon_0 r^2}={m n^2 \hbar^2 \over m^2r^3 } \Leftrightarrow[/math]
[math] r=n^2{4 \pi\epsilon_0\hbar^2\over m e^2 }[/math].

Der kleinste Radius wird als Bohrscher Atomradius bezeichnet

[math] r_0 = { 4 \pi \epsilon_0 \hbar^2 \over m e^2 } \approx 5.29 \cdot 10^{-11}m[/math].

Position der Linien im Spektrum des Wasserstoffs

Im Coulombfeld des Kerns gilt für die potentielle Energie des Elektrons

[math]E_{pot} = -{ e^2 \over 4 \pi \epsilon_0 r} =_{(3)} -{ e^2 \over 4 \pi \epsilon_0 (n^2{ 4 \pi \epsilon_0 \hbar^2 \over me^2 })} = -{ e^2 m e^2 \over 16 \pi^2 \epsilon_0^2 n^2({h \over 2\pi})^2} = -{ m e^4 \over 4 \epsilon_0^2 n^2 h^2 }[/math],

für die kinetische Energie gilt

[math]E_{kin} = {1 \over 2}mv^2 =_{(1)} {1 \over 2}r{ e^2 \over 4 \pi \epsilon_0 r^2 } = { e^2 \over 8 \pi \epsilon_0 r } =_{(3)} { e^2 \over 8 \pi \epsilon_0 (n^2{ 4 \pi \epsilon_0 \hbar^2 \over me^2 }) } = -{1 \over 2}E_{pot}[/math],

also für die Energie im [math]n[/math]-ten Zustand

[math]E_n = E_{kin}+E_{pot} = {1 \over 2}E_{pot} = -{ m e^4 \over 8 \epsilon_0^2 n^2 h^2 }[/math].

Für eine beliebige Kernladung mit Z Protonen ergibt sich eine Energie von

[math] E_n = -{ m e^4 \over 8 \epsilon_0^2 h^2 } {Z^2 \over n^2} = -{ e^2 \over 8 \pi \epsilon_0 } {1\over a_0} {Z^2 \over n^2} = -13.6 {Z^2 \over n^2}{eV}[/math].

Für die Energiedifferenz vom [math]n_1[/math]-ten in den [math]n_2[/math]-ten Zustand erhält man

[math]\Delta E = E_{n_2} - E_{n_1} = { m e^4 \over 8 \epsilon_0^2 h^2 } \left( { 1 \over n_1^2 } - { 1 \over n_2^2 } \right)[/math],

wobei diese Energiedifferenz positiv ist, das heißt die Gesamtenergie des Systems durch Energiezufuhr von außen erhöht wird, wenn [math]n_2 \gt n_1[/math], und ansonsten Energie emittiert wird. Diese sogenannte Rydberg-Formel wurde bereits 1888 von Johannes Rydberg ohne Kenntnis eines Atommodells allein aufgrund von beobachteten Linienspektren aufgestellt.

Für die Erklärung der Spektren ist man an der Frequenz interessiert, für die nach Planck gilt [math]E=h\nu[/math]. Die Frequenz der emittierten Strahlung beim Sprung vom [math]n_1[/math]-ten in den [math]n_2[/math]-ten Zustand ([math]n_1 \gt n_2[/math]) beträgt also

[math] \nu = { {m e^4} \over {8 \epsilon_0^2 h^3} } \left( {1 \over n_2^2} - {1 \over n_1^2} \right) [/math].

Diese Voraussage entspricht bis auf die vierte Dezimale den beobachteten Werten.

Exaktere Werte erhält man, wenn man bedenkt, dass der Kern sich beim Kreisen des Elektrons minimal mitbewegt - beide bewegen sich um den gemeinsamen Schwerpunkt, der aber innerhalb des in der Ruhemasse 1836 Mal schwereren Protons liegt - die Mechanik liefert einen Faktor [math] { 1 \over 1 + { m_{\mathrm{Elektron}} \over m_{\mathrm{Kern}} } } \approx { 1 \over 1{,}00055 } [/math].

Lässt man [math]n_1[/math] gegen Unendlich gehen, erhält man die Energie, die nötig ist, um ein Elektron aus dem Unendlichen bis zum Zustand [math]n_2[/math] zu bewegen, also die Gesamtenergie des Grundzustands [math]n_2[/math].

Bestätigungen

Das bohrsche Atommodell konnte eine Reihe von physikalischen Messergebnissen der im Entstehen begriffenen Atomphysik erklären. In nachfolgenden mit höherer Genauigkeit durchgeführten Experimenten zeigten sich allerdings auch deutliche Abweichungen zwischen Modell und Wirklichkeit.

Größe der Atome

Der mit den wenigen Grundannahmen des Modells berechnete Durchmesser von Atomen liegt für viele Elemente in der richtigen Größenordnung. Insbesondere stimmten sie grob mit den zur gleichen Zeit von Max von Laue und William H. Bragg erstmals durchgeführten Experimenten zur Röntgenbeugung überein. Die kleine, aber endliche Größe war eine Schlüssel-Eigenschaft der Atome in den noch vagen Vorstellungen zum Aufbau der Materie. Daher wurde die Fähigkeit des Bohr-Modells, die Größe aus allgemeinen Annahmen abzuleiten, als Erfolg angesehen.

Spektrale Übergänge

Schon 1885 wurden spektrale Linien beim Wasserstoff-Atom entdeckt (Balmer-Serie, später Lyman-Serie, Paschen-Serie und weitere). Für die Position der Linien innerhalb der jeweiligen Serie konnte Johannes Rydberg anhand von gemessenen Linienspektren bereits 1888 eine numerische Formel angeben. Der physikalische Hintergrund dieser Formel blieb jedoch zwanzig Jahre lang ein Rätsel. Die von Bohr eingeführten spektralen Übergänge der Elektronen von einer Schale auf die andere erlaubten, die Rydberg-Formel aus allgemeinen Prinzipien abzuleiten. Auch waren sie ein intuitiv einleuchtendes Bild der Vorgänge im Atom. Eine Serie entspricht dabei den Übergängen von Elektronen höherer Niveaus auf das gleiche Grundniveau. Für verschiedene höhere Niveaus erhält man eine höhere Energiedifferenz und damit Photonen höherer Energie, also höherer Frequenz.

Franck-Hertz-Versuch

Eine weitere Bestätigung des bohrschen Atommodells erfolgte 1913/1914 mit dem Franck-Hertz-Versuch. In dem Versuch konnte gezeigt werden, dass die Abgabe von Energie nur in bestimmten, diskreten Paketen möglich ist. Damit war der Quantenaspekt des bohrschen Atommodells bestätigt.

Probleme

Das Atommodell von Bohr steht in vielen Punkten im Widerspruch zu der durch Messung zugänglichen Realität. Einige dieser Widersprüche waren bereits zur Zeit der Erstellung des Modells bekannt. Andere wurden später mit verbesserten Experimenten und weiter ausgearbeiteter Theorie der Quantenmechanik offensichtlich:

  • Die Postulate werden durch kein grundlegendes Prinzip, sondern allein durch ihren Erfolg gerechtfertigt. Sie widersprechen der klassischen Elektrodynamik.
  • Chemische Bindungen können mit dem Bohr-Modell nicht verstanden werden.
  • Der Bahn-Drehimpuls des Elektrons im Grundzustand müsste nach dem Bohr-Modell [math]\hbar[/math] sein, tatsächlich ist er aber 0.
  • Sobald ein Atom mehr als ein Elektron besitzt, passen die mit dem Bohr-Modell berechneten Linienpositionen nicht zu den gemessenen Spektren.
  • Die Aufspaltung vieler Spektrallinien unter dem Einfluss von Magnetfeldern (Zeeman-Effekt) kann nicht erklärt werden.
  • Bestimmte Spektrallinien des Wasserstoffs erweisen sich bei genaueren Messungen als Doppellinien. Diese nach ihrem Entdecker Lamb-Shift genannte Trennung kann das Bohr-Modell nicht erklären.
  • Die in der Radioastronomie wichtige 21cm-Linie des Wasserstoffs kann nicht aus dem Bohr-Modell abgeleitet werden.
  • Durch die geringen Abmessungen des Atoms verletzt die Vorstellung einer definierten Bahn des Elektrons um den Atomkern die 1927 entdeckte Heisenbergsche Unschärferelation.

Die Theorie der Quantenmechanik, deren Berechnungen bis heute in allen Details mit den experimentellen Befunden übereinstimmt, zeichnet mit dem Orbitalmodell ein grundsätzlich anderes Bild vom Atom. Ohne äußere Einwirkungen ist das Atom stationär, es gibt also keine Bewegungen von Elektronen auf Bahnen. Anders als es das Bohr-Modell annimmt, hat das Elektron beim atomaren Wasserstoff eine endliche Aufenthaltswahrscheinlichkeit im Kern. Orbitale können mit zwei Kernen assoziiert sein und so chemische Bindungen vermitteln.


Ausblick

Das bohrsche Atommodell fand im Bohr-Sommerfeldsches Atommodell verschiedene Erweiterungen. So wurde unter anderem eine zweite und dritte Quantenzahl eingefügt, um Feinstruktur-Aufspaltungen zu erklären. Der Stern-Gerlach-Versuch erweiterte das Modell abermals um den Spin.

Mit der Quantenmechanik wurden beide Modelle abgelöst, zugleich aber auch die bohrschen Postulate vollständig begründet. Es wurde erkennbar, warum das bohrsche Modell und seine Erweiterung in vielen Bereichen Erfolge hatten, das heißt richtige Voraussagen trafen.

An dieser Stelle sollen zwei Beispiele gegeben werden, wie die bohrsche Auswahlbedingung schon durch grundlegende quantenmechanische Prinzipien - den Materiewellen beziehungsweise die heisenbergsche Unschärferelation - plausibel gemacht werden kann, ohne in irgendeiner Form den quantenmechanischen Formalismus aufzubauen.

De Broglie

Schon 1923 betrachtete Louis-Victor de Broglie Elektronen zum ersten Mal als Wellen (Materiewellen) und zeigte mithilfe einer relativistischen Argumentation, dass für die Wellenlänge [math]\lambda[/math] eines Elektrons mit dem Impuls [math]p[/math] gilt

[math]\lambda = { h \over p } = { h \over mv }.[/math]

So wie die Saite einer Geige auch nur so schwingen kann, dass ein ganzzahliges Vielfaches der Wellenlänge auf die Saite passt - denn an den Aufhängungspunkten muss ein Wellenknoten vorliegen - so kann das Elektron auch nur so schwingen, dass ein ganzzahliges Vielfaches auf seine Kreisbahn passt:

[math]2 \pi r = n \lambda \Leftrightarrow 2 \pi r = n { h \over mv } \Leftrightarrow mvr = n \hbar \Leftrightarrow L = n \hbar;[/math]

genau Bohrs Auswahlbedingung.

Heisenberg

Eine häufig gebrauchte Formulierung der heisenbergschen Unschärferelation besagt, dass für die Ortsunschärfe [math]\Delta x[/math] und die Impulsunschärfe [math]\Delta p[/math] stets gilt

[math] \Delta x \Delta p \ge h [/math].

Gleichartige Relationen gelten aber auch unter anderem für Energie und Zeit, und, was hier benutzt werden soll, für Drehimpuls L und Drehwinkel [math]\varphi[/math]:

[math] \Delta L \Delta \varphi \ge h [/math].

Nun kann man bei der Messung eines Drehwinkels aber offenbar maximal einen Fehler von [math]2\pi[/math] (360°) machen, also [math] \Delta \varphi \le 2\pi[/math], und damit folgt für die maximale Unschärfe für den Winkel [math]\Delta \varphi_{max} = 2\pi[/math], und damit

[math] \Delta L \Delta \varphi_{max} \ge h \Rightarrow \Delta L \cdot 2\pi \ge h \Rightarrow \Delta L \ge \frac{h}{2\pi} = \hbar [/math].

Für minimale Unschärfe von L gilt dann:

[math] \Delta L_{min} = \hbar [/math]

Man kann also sagen, dass der Drehimpuls einen Bereich von [math]\hbar[/math] für sich beansprucht. Drehimpulse müssen also, um unterscheidbar zu sein, mindestens diesen Abstand oder ein Vielfaches davon haben. Also muss gelten

[math] L = n \hbar.[/math]

Dies ist genau die Auswahlbedingung von Bohr.