Kreisprozesse
Reale Prozesse, wie sie in Wärmepumpen und Wärmekraftmaschinen ablaufen, lassen sich durch Kreisprozesse näherungsweise erklären; ein Kreisprozess bildet eine Idealisierung des realen Vorganges. Aus dem Wort Kreisprozess geht hervor, dass ein Stoff (meist ein Gas) zyklisch die gleichen Zustände durchläuft. Im Kreisprozess tauscht der Stoff reversibel Entropie mit der Umgebung aus.
In dieser Vorlesung werden drei Kreisprozess behandelt. Der Carnot-Prozess ist nur vom historischen Interesse. Anhand dieses Prozesses hat Rudolf Clausius die Entropie als Zustandsgrösse hergeleitet. Viele Physikkurse folgen bei der Einführung der Entropie immer noch den Ideen von Clausius und verschleiern damit, dass die Entropie eine Primärgrösse ist, die in der Natur existiert und die man nicht aus fundamentaleren Grössen herleiten muss. Der Stirling-Prozess wird in dem von Robert Stirling erfunden Motor näherungsweise realisiert. Von zentraler Bedeutung für die Technik ist der Joule-Prozess, weil das Gas in Gastubinen und Strahltriebwerken in guter Näherung diesen Kreisprozess durchläuft.
Lernziele
Sie lernen in dieser Vorlesung
Basisprozesse
In der letzten Vorlesung haben Sie gelernt, wie man mit Hilfe eines systemdynamischen Modells, des Carnotors, die vier Basisprozess simuliert. Weil das Gas bei diesen Prozessen lauter Gleichgewichtszustände durchläuft, genügt eine statische Analyse. Das dazu notwendige Wissen wird nachfolgend nochmals vertieft.
isochor
Beim isochoren Heizen oder Kühlen wird Entropie bei konstant gehaltenem Volumen zu- oder abgeführt. Der hydraulische Zugang muss beim Carnotor geschlossen und der thermische aktiviert sein. Isobare Prozess werden durch folgende Beziehungen beschrieben
Prozess | thermisch | kalorisch | entropisch |
---|---|---|---|
isochor | [math]\frac pT=\frac{nR}{V}[/math] = konst. | [math]\Delta W=n\hat c_V\Delta T[/math] | [math]\Delta S=n\hat c_V\ln{\frac{T_2}{T_1}}[/math] |
Der Druck steigt proportional zu absoluten Temperatur, die innere Energie mit der Temperaturdifferenz und die Entropie mit dem Logarithmus der Temperaturverhältnisse. Die molare Energiekapazität (Wärmekapazität bei konstantem Volumen) ist gleich der Zahl der Freiheitsgrade der Teilchen mal die halbe universelle Gaskonstante
- [math]\hat c_V=\frac f2 R[/math].
isobar
Beim isobaren Heizen oder Kühlen wird Entropie bei konstant gehaltenem Druck zu- oder abgeführt. Der hydraulische Zugang muss beim Carnotor auf Freilauf geschaltet und der thermische aktiviert sein. Die Stärke des zufliessenden Wärmestromes ist gleich der Änderungsrate der Enthalpie
- [math]I_{W_{therm}}=\dot H=n\hat c_p\dot T=\dot W+p\dot V=n\hat c_V\dot T+nR\dot T[/math]
In der letzten Umformung ist die thermische Zustandsgleichung des idealen Gases verwendet worden. Daraus folgt für die molare Enthalpiekapazität (Wärmekapazität bei konstantem Druck) des idealen Gases
- [math]\hat c_p=\hat c_V+R[/math]
Die molare Enthalpiekapazität (Wärmekapazität bei konstantem Druck) näherungsweise idealer Gase ist gleich der Zahl der Freiheitsgrade plus zwei mal die halbe universelle Gaskonstante
- [math]\hat c_p=\frac{f+2}{2}R[/math]
Das isobare Heizen oder Kühlen von idealem Gas wird durch folgende Gleichungen beschrieben
Prozess | thermisch | kalorisch | entropisch |
---|---|---|---|
isobar | [math]\frac VT=\frac{nR}p[/math] = konst. | [math]\Delta H=n\hat c_p\Delta T[/math] | [math]\Delta S=n\hat c_p\ln{\frac{T_2}{T_1}}[/math] |
Das Volumen vergrössert sich proportional zur absoluten Temperatur, die Enthalpie wächst mit der Temperaturdifferenz und die Entropie mit dem Logarithmus der Temperaturverhältnisse.
isentrop
Beim isentropen Komprimieren oder Expandieren ändert sich die Entropie des Gases nicht. Der hydraulische Zugang des Carnotor ist aktiviert und der thermische geschlossen. Aus der Beschreibung der Entropie in Funktion des Volumens und der Temperatur
- [math]\Delta S=n\left(\hat c_V\ln{\frac{T_2}{T_1}}+R\ln{\frac{V_2}{V_1}}\right)=0[/math]
folgt
- [math]\left(\frac{V_2}{V_1}\right)^R=\left(\frac{T_1}{T_2}\right)^{\hat c_V}[/math]
Diese Gleichung wird meist mit Hilfe des Isentropenexponenten κ, dem Verhältnis von Enthalpie- zu Energiekapazität, beschrieben
- [math]\kappa=\frac{\hat c_p}{\hat c_V}=\frac{\hat c_V+R}{\hat c_V}=\frac{f+2}{f}[/math]
Der Isentropenexpoenent beträgt für Edelgase 3/2 und für Luft 1.4. Mit Hilfe der thermischen Zustandsgleichung des idealen Gases kann diese Beziehung auf die Zustandsgrössen Druck und Volumen bzw. Druck und Temperatur umgerechnet werden
Prozess | thermisch | kalorisch | entropisch |
---|---|---|---|
isentrop | [math]\left(\frac{V_2}{V_1}\right)^{\kappa-1}=\frac{T_1}{T_2}[/math] [math]\left(\frac{V_2}{V_1}\right)^\kappa=\frac{p_1}{p_2}[/math] |
[math]\Delta W=n\hat c_V\Delta T[/math] | [math]\Delta S=0[/math] |
Hier erscheint die Wärmekapazität bei konstantem Volumen, obwohl bei diesem Prozess keine thermische Energie ausgetauscht wird und das Volumen nicht konstant bleibt. Die Bezeichnung Energiekapazität wäre deshalb die treffendere Bezeichnung. Die mittlere Form unter den thermischen Zustandsgleichungen für den isentropen Prozess hat eine gewisse Ähnlichkeit mit dem Boyleschen Gesetz [math]pV^\kappa=konst.[/math].
isotherm
Beim isothermen Komprimieren oder Expandieren wird unkontrolliert Entropie mit der Umgebung ausgetauscht. Der hydraulische Zugang des Carnotors ist aktiviert und der thermische auf Freilauf geschaltet. Die innere Energie bleibt infolge gleich bleibender Temperatur konstant. Deshalb ist die Summe aus thermischem und mechanischem Energiestrom gleich Null. Bei der isothermen Prozessführung wird also Arbeit vollständig in Wärme bzw. Wärme vollständig in Arbeit umgewandelt. Bildlich gesprochen wird bei der Kompression die mechanisch zugeführte Energie auf die abfliessende Entropie umgeladen. Bei der Expansion wird die mit der Entropie zugeführte Energie an einen mechanischen Träger (Impuls oder Volumen) abgegeben, wobei die Entropie im sich vergrössernden Volumen gespeichert bleibt.
Das isotherme Komprimieren oder Expandieren von idealem Gas wird durch folgende Gleichungen beschrieben
Prozess | thermisch | kalorisch | entropisch |
---|---|---|---|
isotherm | [math]pV=nRT[/math] = konst. | [math]\Delta W=0[/math] | [math]\Delta S=nR\ln{\frac{V_2}{V_1}}[/math] |
Das Produkt aus Volumen und absolutem Druck bleibt konstant. Die Arbeit lässt sich, wie in der letzten Vorlesung gezeigt, durch direkte Integration der Druck-Volumen-Beziehung berechnen, oder über die Wärme, die bei konstanter Temperatur gleich ausgetauschte Entropie mal diese Temperatur ist
- [math]W_{mech}=-W_{therm}=-TS_{aus}=-T\Delta S=nRT\ln{\frac{V_1}{V_2}}[/math]
Carnot-Zyklus
Der Carnot-Zyklus wurde erstmals 1824 von Sadi Carnot in der berühmt gewordenen Publikation über die bewegende Kraft des Feuers (Réflexions sur la puissance motrice du feu) veröffentlicht. Dabei vertrat Carnot die Hypothese, dass die Wärme (chaleur) wie das fallende Wasser eine bewegende Kraft entfaltet, sobald sie über ein Temperaturgefälle fliesst. Identifiziert man die Wärme mit der Entropie und die bewegende Kraft mit der Energie, hat Carnot eine sehr tragfähiges Modell thermischer Prozesse entwickelt.
Beim Carnot-Zyklus wird Wärme über eine isotherme Expansion eines Arbeitsgases aus einem heissen Wärmebad entnommen. Danach wird das Gas isentrop entspannt, bis es die Temperatur eines zweiten Wärmebades erreicht hat. An dieses gibt das Gas die aufgenommene Wärme bei konstant gehaltener Temperatur wieder ab. Danach wird das Arbeitsgas mittels isentroper Kompression auf die ursprünglich Temperatur gebracht (hier ist mit Wärme - entsprechend der Vorstellung von Carnot - immer die Entropie gemeint).
Nummeriert man die "Eckpunkte" des Carnot-Zyklus mit 1, 2, 3, 4, ergibt sich die folgende Beschreibung
Prozess | thermische Beschreibung | Entropie | Energie |
---|---|---|---|
isotherme Expansion 1 nach 2 | [math]pV=nRT_{12}=konst[/math] | [math]\Delta S=nR\ln{\frac{V_2}{V_1}}[/math] | Wärme = [math]nRT_{12}\ln{\frac{V_2}{V_1}}[/math] = -Arbeit |
isentrope Expansion 2 nach 3 | [math]\left(\frac{V_3}{V_2}\right)^{\kappa-1}=\frac{T_{12}}{T_{34}}[/math] | [math]\Delta S=0[/math] | Arbeit = [math]n\hat c_V(T_{34}-T_{12})[/math] |
isotherme Kompression 3 nach 4 | [math]pV=nRT_{34}=konst[/math] | [math]\Delta S=nR\ln{\frac{V_4}{V_3}}[/math] | Arbeit = [math]nRT_{34}\ln{\frac{V_3}{V_4}}[/math] = -Wärme |
isentrope Kompression 4 nach 1 | [math]\left(\frac{V_1}{V_4}\right)^{\kappa-1}=\frac{T_{34}}{T_{12}}[/math] | [math]\Delta S=0[/math] | Arbeit = [math]n\hat c_V(T_{12}-T_{34})[/math] |
Der hydraulische Port des Carnotors ist beim Carnot-Zyklus immer aktiv. Der thermische Port wird entweder auf geschlossen (isentrop) oder auf Freilauf geschaltet (isotherm). Weil die bei hoher Temperatur zugeführte Entropie der bei tiefer wieder abgeführten entspricht, folgt für die Volumen in den vier Eckpunkten
- [math]\frac {V_2}{V_1}=\frac {V_3}{V_4}[/math]
Der Carnot-Zyklus ist durch die Temperatur der beiden Wärmebäder, das minimale und das maximale Volumen sowie den Isentropenexponenten des Arbeitsgases (κ) festgelegt.