Lösung zu Aviatik 2009/2

Aus SystemPhysik
Version vom 4. Februar 2010, 17:31 Uhr von Admin (Diskussion | Beiträge) (Die Seite wurde neu angelegt: ==Aufgabe 1== #Den Teil des elektrischen Kreises, der mit der Erde verbunden ist, kann ausgeschnitten werden. Die verbleibenden Teile der beiden Kondensatoren bilden da...)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Aufgabe 1

  1. Den Teil des elektrischen Kreises, der mit der Erde verbunden ist, kann ausgeschnitten werden. Die verbleibenden Teile der beiden Kondensatoren bilden dann im Flüssigkeitsbild die beiden Töpfe mit den Grundflächen 12 mF und 8 mF. Der grössere Topf ist 15 V hoch gefüllt. Beim andern reicht der Füllzustand nur bis -10 V.
  2. Nach dem Ausgleich weisen beide Töpfe einen Füllstand von 5 V auf und speichern folglich 60 mC bzw. 40 mC elektrische Ladung.
  3. Beim Entladevorgang "fallen" 120 mC (12 mF * 10 V) im Mittel um 12.5 V (die Hälfte von 15 V - (-10 V)) hinunter, was eine freigesetzte Energie von 1.5 J ergibt.
  4. Die beiden Kondensatoren sind in Bezug auf den Entladevorgang in Serie geschaltet. Folglich berechnet sich die Kapazität gemäss
[math]C=\frac{C_1*C_2}{C_1+C_2}[/math] = 4.8 mC
was eine Zeitkonstante von
[math]\tau=RC[/math] = 96 s
ergibt.

Aufgabe 2

Die Kurve, die in Phase mit der Spannung ist, beschreibt die Stromstärke des Widerstands. Die Stromstärke beim Kondensator ist dann Null, wenn die Spannung maximal oder minimal ist. Zum Zeitpunkt der maximalen Spannung wächst die Stromstärke durch die Induktivität am stärksten. Mit diesen Überlegungen können die drei Kurven identifiziert werden. Dass die Stromstärke bei der Induktivität nie negativ wird hängt mit der gewählten Anfangsbedingung (Stromstärke gleich Null) zusammen.

  1. [math]R=\frac{U}{I}[/math] = 50 Ω
  2. [math]Q_{gefl}=\int_0^{0.005s} Idt[/math] = 6 10-4 C (Fläche unter der Kurve); [math]C=\frac{Q_{gefl}}{U}[/math] = 610-5 F
  3. [math]\dot I[/math] = 32.6 A/s (Steigung der Kurve bei 0.005 s); [math]L=\frac{U}{\dot I}[/math] = 0.3 H.
  4. Durch die Spannungsquelle fliesst der totale Strom. Zum Zeitpunkt 0.004 s sind das 0.314 A bei einer Spannung von 9.5 V, was eine Leistung von etwa 3 W ergibt.

Aufgabe 3

Um diese Aufgabe zu lösen, zeichnet man mit Vorteil ein Flüssigkeitsbild und skizziert das v-t-Diagramm direkt daneben.

  1. Das Geschwindigkeits-Zeit-Diagramm ist nebenstehend abgebildet. Die Strecke, um die der Klotz geschoben wird, entspricht der Fläche des unteren Dreiecks (35.4 m). Die Verformung der Knautschzone entspricht der Fläche des Dreiecks ganz links (0.75 m).
  2. Anfänglich besitzt nur das Auto Impuls. Dieser fliesst während 6 s mit einer Stärke von 3000 N an die Erde ab, was einen Anfangsimpuls von 18 kNs ergibt. Teilt man diese Menge durch die Anfangsgeschwindigkeit, erhält man für die Masse des Autos 1200 kg.
  3. Das Auto gibt in den ersten 0.1 Sekunden 2.2 m/s * 1200 kg = 3'840 Ns Impuls durch die Knautschzone an den Betonklotz ab, was einer mittleren Stromstärke von 38'400 N entspricht.
  4. Der beim Aufprall vom Auto an den Betonklotz abgegebene Impuls fällt im Mittel um 7.5 m/s hinunter. Damit setzt er 3840 Ns * 7.5 m/s = 28.8 kJ Energie frei.
  5. Die zwischen Klotz und Boden dissipierte Energie ist gleich der kinetischen Energie minus der in der Knautschzone freigesetzten Energie (135 kJ - 28.8 kJ = 106.2 kJ) gleich konstante Kraft mal Strecke (3000 N * 35.4 m = 106.2 kJ).