Lösung zu Aviatik 2007/3

  1. Der konvektive Energietransport erfolgt in vier Teilen. Drei dieser vier Terme sind mechanisch begründet. Der vierte Term beschreibt die innere Energie des Fluids [math] I_W=\left(p+\varrho g h+\frac \varrho 2 v^2+\varrho_W\right)I_V=\left(\frac p \varrho+gh+\frac {v^2}{2}+w\right)I_m[/math]. In der hier gestellten Aufgabe sind nur die drei mechanischen Terme zu berücksichtigen.
    1. Die Ausflussgeschwindigkeit ergibt sich aus der "Umwandlung" von potentieller in kinetische Energie. Dies beschreibt das Ausflussgesetz von Torricelli mit fünf Meter "Fallhöhe" [math]v=\sqrt{2gh}[/math] = 9.9 m/s.
    2. Zur Beantwortung dieser Frage formuliert man das Gesetz von Bernoulli für den tiefsten und den fraglichen Punkt [math]p_1+\varrho gh_1+\frac \varrho 2 v_1=p_2+\varrho gh_2+\frac \varrho 2 v_2[/math]. Nun sind die beiden Geschwindigkeiten gleich gross und die Höhe in Punkt 1 darf gleich Null gesetzt werden. Weil der Über- oder Unterdruck gefragt ist, muss der Druck in Punkt 1 auf Null gesetzt werden. Daraus folgt [math]p_{2e}=-\varrho g h_2[/math] = -0.196 bar.
    3. Die Stärke des Volumenstromes ist gleich Querschnitt mal mittlere Strömungsgeschwindigkeit, was hier 13.7 l/s ergibt.
    4. Dem ausfliessenden Wasser kann der folgende Energiestrom zugeordnete werden [math] I_W=\left(p+\varrho g h+\frac \varrho 2 v^2\right)I_V[/math]. Um die dissipierte Leistung zu berechnen, bildet man die Differenz zwischen der kinetischen Energiedichte im reibungsfreien und im reibungsbehafteten Fall und mulitpliziert diesen Wert mit dem effektiv auftretenden Volumenstrom [math]P=\left(\frac \varrho 2 v_{ideal}^2-\frac \varrho 2 v_{real}^2\right)I_V[/math] = 337 W.