Lösung zu Bowling

Version vom 27. April 2007, 06:22 Uhr von Admin (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Flüssigkeitsbild

Die Umfangsgeschwindigkeit der Bowlingkugel bezüglich ihrer Mitte beträgt [math]v_U = \omega r[/math] = 6.75 m/s. Die Kugel dreht sich somit schneller, als wenn sie nur abrollen würde. Folglich wirkt die Gleitreibungskraft in Bewegungsrichtung.

  1. Die Gleitreibung führt der Kugel Impuls zu. Dieser Impuls fliesst in der Kugel quer zu seiner Bezugsrichtung. Längs des quer fliessenden Impulses bildet sich eine Drehimpulssenke.
  2. Der in der Kugel von der Berührfläche zur Mitte quer fliessender Impuls erzeugt eine Drehimpulssenke der Stärke Reibkraft mal Radius (Hebelgesetz).
  3. In der Rollphase muss die Umfangsgeschwindigkeit der Kugel bezüglich ihrer Mitte gleich der Geschwindigkeit dieser Mitte sein.
  4. Die Änderungsraten von Drehimpuls und Impuls sind über das Hebelgesetz fest verkuppelt. Folglich ist auch die Änderung des Drehimpulses fest mit der Änderung des Impulses verknüpft [math]r = \frac {F_R r}{F_R} = \frac {\left|\Delta L\right|}{\Delta p} = \frac {J(\omega - \omega_e)}{m(v_e - v)}= \frac {J(\omega - v_e/r)}{m(v_e - v)}[/math]. Löst man diese Gleichung nach der Endgeschwindigkeit auf, erhält man [math]v_e = \frac {rmv + J\omega}{rm + J/r}[/math] = 4.15 m/s. Die Kugel dreht sich dann mit einer Winkelgeschwindigkeit von 46 s-1.