Lösung zu Rakete im Gravitationsfeld: Unterschied zwischen den Versionen

K (Lösung 4 einfacher beschrieben)
 
(6 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt)
Zeile 14: Zeile 14:
 
:<math> \sum_i I_{mi} = \dot m</math>
 
:<math> \sum_i I_{mi} = \dot m</math>
   
Wir wählen für die Richtung des Massenstroms die natürliche Richtung. Er führt also von der Rakete heraus in die Umgebung, sodass seine Stromstärke positiv ist. Die vertikale Bezugsachse soll nach oben zeigen. Die beiden Bilanzen auf die Rakete angewandt sehen dann so aus:
+
Die Masse geht aus der Rakete an die Umgebung weg, also ist die Massenstromstärke negativ. Die vertikale Bezugsachse soll nach oben zeigen. Die beiden Bilanzen auf die Rakete angewandt sehen dann so aus:
   
 
:<math> v_{Gas} I_{m} - m g = \dot p = \dot m v + m \dot v</math>
 
:<math> v_{Gas} I_{m} - m g = \dot p = \dot m v + m \dot v</math>
   
:<math> I_{m} = \dot m</math> mit <math> I_{m}<0</math>
+
:<math> I_{m} = \dot m</math> mit <math> I_{m}= -200 kg/s<0</math>
   
 
===Lösung zu Frage 2===
 
===Lösung zu Frage 2===
   
Im vorliegenden Beispiel mit der [[Rakete]] gibt es keine Oberflächenkräfte (leitungsartige Impulsströme) und nur einen einzigen Massenstrom. Die Geschwindigkeit des ausströmenden Gases im Bezugssystem Erde (Beobachter) ist gleich der Geschwindigkeit der Rakete (''v'') minus der Geschwindigkeit des ausströmenden Gases (''c'') relativ zur Rakete. Diese Ausströmgeschwindigkeit c ist durch den thermodynamischen Verbrennungsprozess bestimmt. Die Impulsbilanz nimmt deshalb eine einfachere Form (an p-Bezugsachse vertikal nach oben)
+
Im vorliegenden Beispiel mit der [[Rakete]] gibt es keine Oberflächenkräfte (leitungsartige Impulsströme) und nur einen einzigen Massenstrom. Die Geschwindigkeit des ausströmenden Gases im Bezugssystem Erde (Beobachter) ist gleich der Geschwindigkeit der Rakete (''v'') minus der Geschwindigkeit des ausströmenden Gases (''c'') relativ zur Rakete. Diese Ausströmgeschwindigkeit c ist durch den thermodynamischen Verbrennungsprozess bestimmt. Die Impulsbilanz nimmt deshalb eine einfachere Form (an ''p''-Bezugsachse vertikal nach oben)
   
:<math> - m g - I_m (v - c) = \dot p = \dot m v + m \dot v</math>
+
:<math> - m g + I_m (v - c) = \dot p = \dot m v + m \dot v</math>
   
 
Setzt man für die Gravitationsfeldstärke 9 N/kg ein, erhält man eine Impulsänderungsrate von
 
Setzt man für die Gravitationsfeldstärke 9 N/kg ein, erhält man eine Impulsänderungsrate von
Zeile 35: Zeile 35:
 
Setzt man die Massenbilanz
 
Setzt man die Massenbilanz
   
:<math> - I_m = \dot m</math>
+
:<math> I_m = \dot m</math>
   
 
in die Impulsbilanz ein, kann man auf beiden Seiten dieser Gleichung den Term <math> v \cdot I_m</math> streichen und man erhält eine sehr kompakte Formel, die an das [[Grundgesetz der Mechanik]] erinnert
 
in die Impulsbilanz ein, kann man auf beiden Seiten dieser Gleichung den Term <math> v \cdot I_m</math> streichen und man erhält eine sehr kompakte Formel, die an das [[Grundgesetz der Mechanik]] erinnert
   
:<math> - m g + c I_m = m \dot v</math>
+
:<math> - m g - c I_m = m \dot v</math>
   
 
Daraus lässt sich die Beschleunigung ermitteln
 
Daraus lässt sich die Beschleunigung ermitteln
   
:<math>\dot v = - g + c \frac {I_m}{m}</math> = - 9 N/kg + 3700 m/s * 200 kg/s / 25'000 kg = 20.6 m/s<sup>2</sup>
+
:<math>\dot v = - g + c \frac {-I_m}{m}</math> = - 9 N/kg + 3700 m/s * 200 kg/s / 25'000 kg = 20.6 m/s<sup>2</sup>
   
 
Die Beschleunigung der Rakete ist trotz negativer Impulsänderungsrate positiv, weil die Rakete Masse abgibt, die mit wenig Impuls beladen ist.
 
Die Beschleunigung der Rakete ist trotz negativer Impulsänderungsrate positiv, weil die Rakete Masse abgibt, die mit wenig Impuls beladen ist.
   
 
===Lösung zu Frage 4===
 
===Lösung zu Frage 4===
  +
Aus <math>\dot p = \dot m v + m \dot v</math> erhält man den Zusammenhang zwischen Beschleunigung und Impulsänderungsrate
Mathematisch hängt die Beschleunigung wie folgt mit der Impulsänderungsrate zusammen
 
   
:<math>\dot v = \frac {\dot p - \dot m v}{m} = \frac {\dot p}{m} + \frac {I_m}{m} v = \frac {-485 kN}{25'000 kg} + \frac {200 kg/s}{25'000 kg} \cdot 5000 m/s = </math> - 19.4 m/s<sup>2</sup> + 40 m/s<sup>2</sup>
+
:<math>\dot v = \frac {\dot p - \dot m v}{m} = \frac {\dot p}{m} + \frac {-I_m}{m} v = \frac {-485 kN}{25'000 kg} + \frac {200 kg/s}{25'000 kg} \cdot 5000 m/s = </math> - 19.4 m/s<sup>2</sup> + 40 m/s<sup>2</sup>
   
 
Die Beschleunigung wird kleiner als Null, sobald die (negative) Impulsänderunsrate kleiner als das Negative des Produktes aus Massenstromstärke und Geschwindigkeit der Rakete wird.
 
Die Beschleunigung wird kleiner als Null, sobald die (negative) Impulsänderunsrate kleiner als das Negative des Produktes aus Massenstromstärke und Geschwindigkeit der Rakete wird.

Aktuelle Version vom 16. Dezember 2014, 11:38 Uhr

Die eindimensionale Impulsbilanz für offene Systeme, welche die Summe über alle leitungsartigen und konvektiven Impulsströme zusammen mit der gravitativen Impulsquelle gleich der Änderungsrate des Impulsinhaltes setzt, kann etwas konkreter formuliert werden, indem man

Lösung zu Frage 1

Die Impulsbilanz fasst die leitungsartigen Impulsströme (Kräfte), die konvektiven Impulsströme sowie die Impulsquelle (Gewichtskraft) zur Impulsänderungsrate zusammen

[math] \sum_i F_i + \sum_i v_i I_{mi} + m g = \dot p = \dot m v + m \dot v[/math]

Die allgemeine Massenbilanz besagt, dass die Summe über alle Massenstromstärken gleich der Änderungsrate der Masse ist

[math] \sum_i I_{mi} = \dot m[/math]

Die Masse geht aus der Rakete an die Umgebung weg, also ist die Massenstromstärke negativ. Die vertikale Bezugsachse soll nach oben zeigen. Die beiden Bilanzen auf die Rakete angewandt sehen dann so aus:

[math] v_{Gas} I_{m} - m g = \dot p = \dot m v + m \dot v[/math]
[math] I_{m} = \dot m[/math] mit [math] I_{m}= -200 kg/s\lt 0[/math]

Lösung zu Frage 2

Im vorliegenden Beispiel mit der Rakete gibt es keine Oberflächenkräfte (leitungsartige Impulsströme) und nur einen einzigen Massenstrom. Die Geschwindigkeit des ausströmenden Gases im Bezugssystem Erde (Beobachter) ist gleich der Geschwindigkeit der Rakete (v) minus der Geschwindigkeit des ausströmenden Gases (c) relativ zur Rakete. Diese Ausströmgeschwindigkeit c ist durch den thermodynamischen Verbrennungsprozess bestimmt. Die Impulsbilanz nimmt deshalb eine einfachere Form (an p-Bezugsachse vertikal nach oben)

[math] - m g + I_m (v - c) = \dot p = \dot m v + m \dot v[/math]

Setzt man für die Gravitationsfeldstärke 9 N/kg ein, erhält man eine Impulsänderungsrate von

[math] \dot p = [/math] - 25000 kg * 9 N/kg - 200 kg/s * (5000 m/s - 3700 m/s) = -485 kN

Der Impuls der Rakete nimmt ab, weil das Gravitationsfeld Impuls absaugt und das ausströmende Gas Impuls mitnimmt.

Lösung zu Frage 3

Setzt man die Massenbilanz

[math] I_m = \dot m[/math]

in die Impulsbilanz ein, kann man auf beiden Seiten dieser Gleichung den Term [math] v \cdot I_m[/math] streichen und man erhält eine sehr kompakte Formel, die an das Grundgesetz der Mechanik erinnert

[math] - m g - c I_m = m \dot v[/math]

Daraus lässt sich die Beschleunigung ermitteln

[math]\dot v = - g + c \frac {-I_m}{m}[/math] = - 9 N/kg + 3700 m/s * 200 kg/s / 25'000 kg = 20.6 m/s2

Die Beschleunigung der Rakete ist trotz negativer Impulsänderungsrate positiv, weil die Rakete Masse abgibt, die mit wenig Impuls beladen ist.

Lösung zu Frage 4

Aus [math]\dot p = \dot m v + m \dot v[/math] erhält man den Zusammenhang zwischen Beschleunigung und Impulsänderungsrate

[math]\dot v = \frac {\dot p - \dot m v}{m} = \frac {\dot p}{m} + \frac {-I_m}{m} v = \frac {-485 kN}{25'000 kg} + \frac {200 kg/s}{25'000 kg} \cdot 5000 m/s = [/math] - 19.4 m/s2 + 40 m/s2

Die Beschleunigung wird kleiner als Null, sobald die (negative) Impulsänderunsrate kleiner als das Negative des Produktes aus Massenstromstärke und Geschwindigkeit der Rakete wird.

Aufgabe