Lösung zu Aufgabe Zweimassenschwinger

Aus SystemPhysik
  1. Nach dem Loslassen schwingen die Körper an Ort. Der Impuls fliesst zwischen den Körpern hin und her.
  2. Die Federenergie am Anfang ist gleich der maximalen kinetischen Energie der beiden Körper [math]\frac{D}{2}s_0^2=\frac{m_1}{2}v_1^2+\frac{m_2}{2}v_2^2[/math]. Weil für den Gesamtimpuls gilt [math]p_{tot}=mv_1+m_2v_2=0[/math], folgt [math]Ds_0^2=\left(m_1+\frac{m_1^2}{m_2}\right)v_1^2[/math] und daraus [math]v_1=\sqrt{\frac{D}{m_1+\frac{m_1^2}{m_2}}}s_0[/math] = 0.475 m/s sowie [math]v_2=v_1\frac{m_1}{m_2}[/math] = 1.54 m/s.
  3. Nach einer vollen Periode ist die Feder wieder voll zusammengegrückt [math]T=2\pi\sqrt{\frac{m_{red}}{D}}[/math] = 0.312 s. Die reduzierte Masse ergibt sich aus der Serieschaltung der beiden Impulsspeicher [math]m_{red}=\frac{m_1m_2}{m_1+m_2}[/math] =4.2 kg.

Aufgabe