Radioaktiver Zerfall

Aus SystemPhysik

Bei einem radioaktiven Zerfall wandelt sich ein Atomkern in einen andern um. Dabei nimmt die Zahl der Mutterkerne kontinuierlich ab und die der Tochterkerne zu. Die meisten Elemente besitzen ein oder sogar mehrere Isotope, die instabil sind und zu jedem Zeitpunkt mit einer bestimmten Wahrscheinlichkeit zerfallen. Von einer gegebenen Anzahl von Atomkernen (N) eines radioaktiven Isotops zerfällt in jeder Sekunde ein gewisser Prozentsatz. Weil die Zerfallswahrscheinlichkeit konstant bleibt, ist die Zerfallsrate proportional zur Zahl der noch vorhandenen Kerne

[math]\dot N = -\lambda N = -A[/math]

Der positiv genommen Wert der Zerfallsrate heisst Aktivität A und hat die Einheit Becquerel (Bq). Integriert man die oben aufgeführte Beziehung über die Zeit, erhält man das Zerfallsgesetz

[math]N = N_0 e^{-\lambda t} = N_0 e^{-t/\tau}[/math]

Die Zeitkonstante τ ist zur Zerfallskonstanten λ reziprok. Während der Halbwertszeit zerfallen die Hälfte aller vorhandenen Kerne. Folglich gilt

[math]\frac {N_0}{2} = N_0 e^{-\lambda t_{1/2}} = N_0 e^{-t_{1/2}/\tau}[/math]

Zerfallskonstante, Zeitkonstante und Halbwertszeit hängen deshalb wie folgt zusammen

[math]\lambda = \frac {1}{\tau} = \frac {ln(2)}{t_{1/2}}[/math]