Tut 2.1: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
 
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:


==Radioaktiver Zerfall==
==Radioaktiver Zerfall==
[[Bild:Radioaktiver_Zerfall_SD.jpg|thumb|Systemdiagramm eines radioaktiven Zerfalls]] Bei einem radioaktiven Zerfall wandelt sich ein Atomkern in einen andern um. Dabei nimmt die Zahl der Mutterkerne kontinuierlich ab und die der Tochterkerne zu. Die meisten Elemente besitzen ein oder sogar mehrere [[Isotop]]e, die instabil sind und zu jedem Zeitpunkt mit einer bestimmten Wahrscheinlichkeit zerfallen. Von einer gegebenen Anzahl von [[Atom]]kernen (''N'') eines [[Radioaktivität|radioaktiven]] Isotops zerfällt in jeder Sekunde ein gewisser Prozentsatz. Weil die Zerfallswahrscheinlichkeit konstant bleibt, ist die Zerfallsrate proportional zur Zahl der noch vorhandenen Kerne ist
[[Bild:Radioaktiver_Zerfall_SD.jpg|thumb|Systemdiagramm eines radioaktiven Zerfalls]] Bei einem [[Radioaktiver Zerfall|radioaktiven Zerfall]] wandelt sich ein Atomkern in einen andern um. Dabei nimmt die Zahl der Mutterkerne kontinuierlich ab und die der Tochterkerne zu. Die meisten Elemente besitzen ein oder sogar mehrere [[Isotop]]e, die instabil sind und zu jedem Zeitpunkt mit einer bestimmten Wahrscheinlichkeit zerfallen. Von einer gegebenen Anzahl von [[Atom]]kernen (''N'') eines [[Radioaktivität|radioaktiven]] Isotops zerfällt in jeder Sekunde ein gewisser Prozentsatz. Weil die Zerfallswahrscheinlichkeit konstant bleibt, ist die Zerfallsrate proportional zur Zahl der noch vorhandenen Kerne


:<math>\dot N = -\lambda N = -A</math>
:<math>\dot N = -\lambda N = -A</math>


Der positiv genommen Wert der Zerfallsrate heisst Aktivität ''A'' und hat die Einheit Becquerel (Bq). Das [[System Dynamics|systemdynamische Modell]] eines radioaktiven Zerfalls ist äusserst einfach. Die Zahl der radioaktiven Atomkerne bildet die Bestandesgrösse und die Aktivität ist der einzige Abfluss. Das Bild zeigt das Systemdiagramm eines radioaktiven Zerfalls.
Der positiv genommen Wert der Zerfallsrate heisst Aktivität ''A'' und hat die Einheit Becquerel (Bq). Das [[System Dynamics|systemdynamische Modell]] eines radioaktiven Zerfalls ist äusserst einfach. Die Zahl der radioaktiven Atomkerne bildet die Bestandesgrösse und die Aktivität ist der einzige Abfluss. Das Bild zeigt das Systemdiagramm eines radioaktiven Zerfalls.

Der radioaktive Zerfall kann statt über eine dynamische Modellierung auch mit Hilfe einer Funktion beschrieben werden. Integriert man die oben aufgeführte Beziehung über die Zeit, erhält man das Zerfallsgesetz

:<math>N = N_0 e^{-\lambda t} = N_0 e^{-t/\tau}</math>

Die [[Zeitkonstante]] ''&tau;'' ist zur '''Zerfallskonstanten''' ''&lambda;'' reziprok. Zerfallskonstante und Zeitkonstante lassen sich aus der [[Halbwertszeit]] berechnen

:<math>\frac {N_0}{2} = N_0 e^{-\lambda t_{1/2}} = N_0 e^{-t_{1/2}/\tau}</math>

<math>\lambda = \frac {1}{\tau} = \frac {ln(2)}{t_{1/2}}</math>


'''Zürück zum [[Tutorial|Inhalt]]
'''Zürück zum [[Tutorial|Inhalt]]


==Wasserbett==
==Wasserbett==
[[Bild:Wasserbett_SD.jpg|thumb|Systemdiagramm des Wasserbetts]] Ein Wasserbett (600 Liter Wasser) benötigt pro Monat 30 kWh elektrische Energie, damit es bei einer Raumtemperatur von 17°C auf einer Temperatur von 17°C gehalten werden kann. Wie lange würde es dauern, bis die Temperatur bei einem Stromausfall auf 20.68°C gefallen ist?
[[Bild:Wasserbett_SD.jpg|thumb|Systemdiagramm des Wasserbetts]] Ein Wasserbett (600 Liter Wasser) benötigt pro Monat 30 kWh elektrische Energie, damit es in einem 17°C warmen Zimmer auf einer Temperatur von 27°C gehalten werden kann. Wie lange würde es dauern, bis die Temperatur bei einem Stromausfall auf 20.68°C gefallen ist?


Das Bett muss geheizt werden, weil ein konstanter [[zugeordneter Energiestrom|Energiestrom]] von 42 W aus dem Bett heraus fliesst. Mit dieser Angabe kann der thermische Leitwert des Betts berechnet werden
Das Bett muss geheizt werden, weil ein konstanter [[zugeordneter Energiestrom|Energiestrom]] von 42 W aus dem Bett heraus fliesst. Mit dieser Angabe kann der thermische Leitwert des Betts berechnet werden
Zeile 29: Zeile 19:
Die [[Wärmekapazität]] des Betts ist gleich [[Masse]] mal spezifische Wärmekapaziät, also gleich 2.5 MJ/K. Daraus erhält man für die Zeitkonstante
Die [[Wärmekapazität]] des Betts ist gleich [[Masse]] mal spezifische Wärmekapaziät, also gleich 2.5 MJ/K. Daraus erhält man für die Zeitkonstante


<math>\tau = \frac {C}{G_W}</math> = 6 10<sup>5</sup> s = 7 d
:<math>\tau = \frac {C}{G_W}</math> = 6 10<sup>5</sup> s = 7 d


Somit dauert es sieben Tage, bis die Temperatur des Wasserbetts in einem 17°C warmen Zimmer von 27°C auf 20.68°C gefallen ist.
Somit dauert es sieben Tage, bis die Temperatur des Wasserbetts in einem 17°C warmen Zimmer von 27°C auf 20.68°C gefallen ist.

Aktuelle Version vom 26. Juni 2007, 07:01 Uhr

Geordnete Strukturen haben die Tendenz zu zerfallen: alte Burgen verwittern und organisches Material wird durch Mikroben zersetzt. Hinter den Zerfällen steckt eine unpopuläre aber allmächtige Grösse, die Entropie oder der Wärmestoff. In jedem Zerfallsprozess wird Entropie erzeugt. Die Entropie ist die einzige Grösse in der Natur, die produziert aber nie vernichtet werden kann.

Radioaktiver Zerfall

Systemdiagramm eines radioaktiven Zerfalls

Bei einem radioaktiven Zerfall wandelt sich ein Atomkern in einen andern um. Dabei nimmt die Zahl der Mutterkerne kontinuierlich ab und die der Tochterkerne zu. Die meisten Elemente besitzen ein oder sogar mehrere Isotope, die instabil sind und zu jedem Zeitpunkt mit einer bestimmten Wahrscheinlichkeit zerfallen. Von einer gegebenen Anzahl von Atomkernen (N) eines radioaktiven Isotops zerfällt in jeder Sekunde ein gewisser Prozentsatz. Weil die Zerfallswahrscheinlichkeit konstant bleibt, ist die Zerfallsrate proportional zur Zahl der noch vorhandenen Kerne

[math]\dot N = -\lambda N = -A[/math]

Der positiv genommen Wert der Zerfallsrate heisst Aktivität A und hat die Einheit Becquerel (Bq). Das systemdynamische Modell eines radioaktiven Zerfalls ist äusserst einfach. Die Zahl der radioaktiven Atomkerne bildet die Bestandesgrösse und die Aktivität ist der einzige Abfluss. Das Bild zeigt das Systemdiagramm eines radioaktiven Zerfalls.

Zürück zum Inhalt

Wasserbett

Systemdiagramm des Wasserbetts

Ein Wasserbett (600 Liter Wasser) benötigt pro Monat 30 kWh elektrische Energie, damit es in einem 17°C warmen Zimmer auf einer Temperatur von 27°C gehalten werden kann. Wie lange würde es dauern, bis die Temperatur bei einem Stromausfall auf 20.68°C gefallen ist?

Das Bett muss geheizt werden, weil ein konstanter Energiestrom von 42 W aus dem Bett heraus fliesst. Mit dieser Angabe kann der thermische Leitwert des Betts berechnet werden

[math]G_W = \frac {I_W}{\Delta T}[/math] = 4.17 W/K

Die Wärmekapazität des Betts ist gleich Masse mal spezifische Wärmekapaziät, also gleich 2.5 MJ/K. Daraus erhält man für die Zeitkonstante

[math]\tau = \frac {C}{G_W}[/math] = 6 105 s = 7 d

Somit dauert es sieben Tage, bis die Temperatur des Wasserbetts in einem 17°C warmen Zimmer von 27°C auf 20.68°C gefallen ist.

Solange die Zimmertemperatur konstant bleibt, kann das Problem als Entladevorgang eines RC-Gliedes modelliert werden. Will man die Änderung der Zimmertemperatur mit einbeziehen, lohnt sich der Bau eines kleinen Sytemdynamik-Modells.

Zurück zum Inhalt