Lichtmauer: Unterschied zwischen den Versionen
Admin (Diskussion | Beiträge) |
Admin (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
(4 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 35: | Zeile 35: | ||
==Flüssigkeitsbild== |
==Flüssigkeitsbild== |
||
Das [[Flüssigkeitsbild]] enthält alle Zusammenhänge der eindimensionalen Mechanik mit Ausnahme der Kinematik |
[[Bild:Einstein vs Newton.jpg|thumb|Einstein versus Newton]]Das [[Flüssigkeitsbild]] enthält alle Zusammenhänge der eindimensionalen Mechanik mit Ausnahme der Kinematik. Im Flüssigkeitsbild erscheint jeder Körper als zylindrisches Gefäss (Topf) mit der Masse als Grundfläche. Der Impuls verwandelt sich in eine Flüssigkeit, die Geschwindigkeit wird zur Füllhöhe und die kinetische Energie erscheint als potentielle. Üblicherweise steht der Topf in einem riesigen See, der das unerschöpfliche Fassungsvermögen der Erde nachbildet. Aus dem Bild lassen sich zwei Beziehungen direkt heraus lesen |
||
*der Inhalt ist gleich Grundfläche mal Füllhöhe: <math>p_x=mv_x</math> |
*der Inhalt ist gleich Grundfläche mal Füllhöhe: <math>p_x=mv_x</math> |
||
*die Energie ist gleich Impuls mal mittlere Förderhöhe: <math>W_{kin}=p_x\overline v_x=\frac m2 v_x^2</math> |
*die Energie ist gleich Impuls mal mittlere Förderhöhe: <math>W_{kin}=p_x\overline v_x=\frac m2 v_x^2</math> |
||
Zeile 43: | Zeile 43: | ||
:<math>dW=v_xdp_x=mv_xdv_x</math> |
:<math>dW=v_xdp_x=mv_xdv_x</math> |
||
Dieser Sachverhalt macht sich auch in der quadratischen Abhängigkeit der Energie von der Geschwindigkeit bemerkbar. Dennoch denkt man |
Dieser Sachverhalt macht sich auch in der quadratischen Abhängigkeit der Energie von der Geschwindigkeit bemerkbar. Dennoch denkt man oft nicht daran, dass bei einer konstanten Beschleunigung eines reibungsfrei gelagerten Körpers die Leistung zunimmt, obwohl die Kraft konstant bleibt. |
||
Diese alte Sicht auf die Mechanik beruht auf der Vorstellung von der Masse als unveränderliche Körpereigenschaft. 1905 hat Einstein aber gezeigt, dass es keinen Unterschied zwischen Masse und Energie gibt. Je mehr Energie einem Körper zusammen mit dem Impuls zugeführt wird, desto grösser wird auch seine Masse. Im Flüssigkeitsbild verbreitert sich das Gefäss mit zunehmender Füllhöhe, wobei das "Dickenwachstum" keine Grenzen kennt. Dieser Mechanismus verhindert, dass die Geschwindigkeit eines materiellen Körpers die des Lichts trotz unbeschränkter Impulszufuhr zu überschreiten vermag. |
|||
==Relativitätstheorie== |
==Relativitätstheorie== |
||
Energie ist Masse und Masse ist Energie. Diese heute allgemein anerkannte Äquivalenz |
Energie ist Masse und Masse ist Energie. Diese heute allgemein anerkannte Äquivalenz wird weder in den Lehrbüchern der unteren Schulstufen noch in den Zeitungen korrekt wiedergegeben. Da werden Energie und Masse immer nach als Gegensätze wie Feuer und Eis gehandelt. |
||
Gemäss Einstein entspricht das Produkt aus Masse und Lichtgeschwindigkeit der Energie eines Systems. Folglich ist die Masse gleich Energie dividiert durch das Quadrat der Lichtgeschwindigkeit |
Gemäss Einstein entspricht das Produkt aus Masse und Lichtgeschwindigkeit der Energie eines Systems. Folglich ist die Masse gleich Energie dividiert durch das Quadrat der Lichtgeschwindigkeit |
||
Zeile 56: | Zeile 58: | ||
:<math>dm=\frac{dW}{c^2}=\frac{v_xdp_x}{c^2}</math> |
:<math>dm=\frac{dW}{c^2}=\frac{v_xdp_x}{c^2}</math> |
||
[[Bild:Einstein_vs_Newton_2D.jpg|thumb|Impuls- und Geschwindigkeitszuwachs]]Nun muss mit einem Teil des zugeführten Impulses der Hohlraum, der durch die Massenvergrösserung entstanden ist, aufgefüllt werden. Man könnte diesen Teil ''latenten'' Impuls nennen |
|||
:<math>dp_{xl}=v_xdm=\frac{v_x^2dp_x}{c^2}</math> |
:<math>dp_{xl}=v_xdm=\frac{v_x^2dp_x}{c^2}</math> |
||
Der ''manifeste'' |
Der ''manifeste'' oder ''akute'' Impuls, also der die Beschleunigung verursachende Impuls, ist dann gleich dem Rest |
||
:<math>dp_{xa}=dp_x(1-dp_{xl})=\left(1-\frac{v_x^2}{c^2}\right)dp_x</math> |
:<math>dp_{xa}=dp_x(1-dp_{xl})=\left(1-\frac{v_x^2}{c^2}\right)dp_x</math> |
||
und der |
und der zugehörige Geschwindigkeitszuwachs beträgt |
||
:<math>dv_x=\frac{dp_{xa}}{m}=\left(1-\frac{v_x^2}{c^2}\right)\frac{dp_x}{m}</math> |
:<math>dv_x=\frac{dp_{xa}}{m}=\left(1-\frac{v_x^2}{c^2}\right)\frac{dp_x}{m}</math> |
||
Zeile 89: | Zeile 91: | ||
==Beispiele== |
==Beispiele== |
||
*[[Oszillierende Kraft auf Proton]] |
|||
*[[Relativistisches Teilchen]] |
|||
[[Kategorie:Rel]] |
[[Kategorie:Rel]] |
Aktuelle Version vom 5. September 2008, 13:16 Uhr
Nähert sich das Flugzeug der Schallgeschwindigkeit, steigt der aerodynamische Widerstand erheblich an, bis diese Grenze, bildhaft Schallmauer genannt, überwunden ist. Die Lichtmauer ist offenbar eine noch viel rigidere Grenze. Nicht einmal der Large Hadron Collider (LHC) am CERN in Genf ist in der Lage, ein Proton oder dessen Spiegelbild, das Antiproton, auf eine höhere Geschwindigkeit als die des Lichts zu beschleunigen. Doch wer verbietet den materiellen Körpern, sich schneller als das Licht zu bewegen?
Newton-Mechanik
Die Netwonsche Punktmechanik weist aus heutiger Sicht zwei Schwächen auf
- Kinematik und Dynamik werden nicht klar getrennt
- die Energie wird nicht mit der Masse in Verbindung gebracht
die erste Schwäche hat William Rowan Hamilton schon 1834 für bestimmte Klassen von mechanischen Systemen eliminiert, die zweite Schwäche ist erst mit der Relativitätstheorie von Einstein aufgedeckt worden.
Die Punktmechanik verknüpft die Einwirkungen auf das System, die Kräfte, direkt mit der Systemreaktion, der Beschleunigung
- [math]\sum_i\vec F_i+m\vec g=m\dot\vec v[/math]
Dies Formulierung mag für einige Problemstellungen praktisch sein, für komplexere Systeme ist sie aber eher ungeeignet. Zudem sollte man heute bestrebt sein, nur Differentialgleichungssyteme erster Ordnung zu formulieren. Nur diese lassen sich numerisch direkt integrieren.
SystemPhysik
In der Physik der dynamischen Systeme trennt man die Dynamik von der Kinematik. Zudem weist man der Energie eine klar definierte Rolle zu. Dabei steht die Impulsbilanz im Zentrum (Kräfte symbolisieren die Stärken der Impulsströme und Impulsquellen bezüglich eines ausgewählten Körpers)
- [math]\sum_i\vec F_i+m\vec g=\dot\vec p[/math]
Die dynamische Geschwindigkeit ist dann gleich dem Quotienten aus Impuls und Masse
- [math]\vec v_{dyn}=\frac{\vec p}{m}[/math]
Die dynamische Geschwindigkeit kann bei starren Körpern mit der kinematischen Geschwindigkeit eines festen Punktes, des Massenmittelpunkts, identifiziert werden
- [math]\vec v_{dyn}=\vec v_{MMP}=\dot{\vec s}_{MMP}[/math]
Nun darf man jedem Impulsstrom einen Energiestrom zuordnen. Diesen Energiestrom nennt man Leistung einer Kraft, falls er sich auf einen gegebenen Körper bezieht
- [math]P(\vec F)=v_xF_x+v_yF_y+v_zF_z=\vec v\cdot\vec F[/math]
Die Energieströme erfüllen natürlicherweise die klassische Energiebilanz, falls die Leistung der Gewichtskraft (Impulsquelle) als (negative) Änderungsrate der Gravitationsenergie eingefügt wird
- [math]\sum_i P(\vec F_i)=\dot W_{kin}+\dot W_G[/math]
Flüssigkeitsbild
Das Flüssigkeitsbild enthält alle Zusammenhänge der eindimensionalen Mechanik mit Ausnahme der Kinematik. Im Flüssigkeitsbild erscheint jeder Körper als zylindrisches Gefäss (Topf) mit der Masse als Grundfläche. Der Impuls verwandelt sich in eine Flüssigkeit, die Geschwindigkeit wird zur Füllhöhe und die kinetische Energie erscheint als potentielle. Üblicherweise steht der Topf in einem riesigen See, der das unerschöpfliche Fassungsvermögen der Erde nachbildet. Aus dem Bild lassen sich zwei Beziehungen direkt heraus lesen
- der Inhalt ist gleich Grundfläche mal Füllhöhe: [math]p_x=mv_x[/math]
- die Energie ist gleich Impuls mal mittlere Förderhöhe: [math]W_{kin}=p_x\overline v_x=\frac m2 v_x^2[/math]
Entnimmt man nun der Erde eine beliebig kleine Impulsmenge dp und führt diese dem Körper zu, steigt die Geschwindigkeit um [math]dv_x=\frac{dp_x}{m}[/math]. Die Geschwindigkeit wächst proportional mit dem Impuls und kennt keine obere Grenze. Nur der Energiebedarf ist ein Problem, nimmt doch die pro Impuls aufzuwendende Energie linear mit der Geschwindigkeit zu
- [math]dW=v_xdp_x=mv_xdv_x[/math]
Dieser Sachverhalt macht sich auch in der quadratischen Abhängigkeit der Energie von der Geschwindigkeit bemerkbar. Dennoch denkt man oft nicht daran, dass bei einer konstanten Beschleunigung eines reibungsfrei gelagerten Körpers die Leistung zunimmt, obwohl die Kraft konstant bleibt.
Diese alte Sicht auf die Mechanik beruht auf der Vorstellung von der Masse als unveränderliche Körpereigenschaft. 1905 hat Einstein aber gezeigt, dass es keinen Unterschied zwischen Masse und Energie gibt. Je mehr Energie einem Körper zusammen mit dem Impuls zugeführt wird, desto grösser wird auch seine Masse. Im Flüssigkeitsbild verbreitert sich das Gefäss mit zunehmender Füllhöhe, wobei das "Dickenwachstum" keine Grenzen kennt. Dieser Mechanismus verhindert, dass die Geschwindigkeit eines materiellen Körpers die des Lichts trotz unbeschränkter Impulszufuhr zu überschreiten vermag.
Relativitätstheorie
Energie ist Masse und Masse ist Energie. Diese heute allgemein anerkannte Äquivalenz wird weder in den Lehrbüchern der unteren Schulstufen noch in den Zeitungen korrekt wiedergegeben. Da werden Energie und Masse immer nach als Gegensätze wie Feuer und Eis gehandelt.
Gemäss Einstein entspricht das Produkt aus Masse und Lichtgeschwindigkeit der Energie eines Systems. Folglich ist die Masse gleich Energie dividiert durch das Quadrat der Lichtgeschwindigkeit
- [math]m=\frac{W}{c^2}[/math] oder bezüglich des Zuwachses [math]dm=\frac{dW}{c^2}[/math]
Weil mit dem Impuls immer auch Energie zugeführt wird, vergrössert sich die Masse des Systems um
- [math]dm=\frac{dW}{c^2}=\frac{v_xdp_x}{c^2}[/math]
Nun muss mit einem Teil des zugeführten Impulses der Hohlraum, der durch die Massenvergrösserung entstanden ist, aufgefüllt werden. Man könnte diesen Teil latenten Impuls nennen
- [math]dp_{xl}=v_xdm=\frac{v_x^2dp_x}{c^2}[/math]
Der manifeste oder akute Impuls, also der die Beschleunigung verursachende Impuls, ist dann gleich dem Rest
- [math]dp_{xa}=dp_x(1-dp_{xl})=\left(1-\frac{v_x^2}{c^2}\right)dp_x[/math]
und der zugehörige Geschwindigkeitszuwachs beträgt
- [math]dv_x=\frac{dp_{xa}}{m}=\left(1-\frac{v_x^2}{c^2}\right)\frac{dp_x}{m}[/math]
Pro zugeführte Impulsmenge nimmt die Geschwindigkeit umso weniger zu, je mehr sich diese der des Lichts annähert.
Zur Integration dieser Gleichungen geht man mit Vorteil auf die erste Version zurück und ersetzt die momentane Geschwindigkeit durch den Impulsinhalt und den Momentanwert der Masse
- [math]dm=\frac{v_xdp_x}{c^2}=\frac{p_xdp_x}{mc^2}[/math]
Diese Gleichung lässt sich gut separieren
- [math]c^2mdm=\frac{v_xdp_x}{c^2}=p_xdp_x[/math]
und problemlos integrieren (die Masse des ruhenden Körpers ist im Gegensatz zum Impulsinhalt nicht gleich Null)
- [math]c^2(m^2-m_0^2)=p_x^2[/math]
Masse und Impuls eines Körpers können beliebig gross werden, nicht aber die Geschwindigkeit. Ersetzt man nun den Impuls durch den Quotienten aus Masse und Geschwindigkeit, erhält man nach einer Umformung die Masse in Funktion der Geschwindigkeit
- [math]m=\frac{m_0}{\sqrt{1-\frac{v_x^2}{c^2}}}[/math]
Diese Funktion divergiert, sobald sich der Körper der Lichtgeschwindigkeit nähert. Die Lichtmauer ist somit eine direkte Folge von Einsteins berühmter Formel, die jeder kennt und kaum jemand richtig versteht.